Spaces:
Running
on
Zero
Running
on
Zero
Reorganize structure for even less code clutter; `app.py` is greatly slimmed down
Browse files- app.py +12 -100
- automatic_speech_recognition.py +23 -1
- chatbot.py +31 -0
- image_classification.py +23 -1
- image_to_text.py +22 -1
- text_to_image.py +15 -0
- text_to_speech.py +14 -0
app.py
CHANGED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
from dotenv import load_dotenv
|
| 2 |
-
from functools import partial
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
-
from automatic_speech_recognition import
|
| 6 |
-
from chatbot import
|
| 7 |
-
from image_classification import
|
| 8 |
-
from image_to_text import
|
| 9 |
-
from text_to_image import
|
| 10 |
-
from text_to_speech import
|
| 11 |
-
from utils import request_image, request_audio
|
| 12 |
|
| 13 |
|
| 14 |
class App:
|
|
@@ -22,103 +20,17 @@ class App:
|
|
| 22 |
gr.Markdown("A gallery of building blocks for building AI applications")
|
| 23 |
with gr.Tabs():
|
| 24 |
with gr.Tab("Text-to-image Generation"):
|
| 25 |
-
|
| 26 |
-
text_to_image_prompt = gr.Textbox(label="Prompt")
|
| 27 |
-
text_to_image_generate_button = gr.Button("Generate")
|
| 28 |
-
text_to_image_output = gr.Image(label="Image", type="pil")
|
| 29 |
-
text_to_image_generate_button.click(
|
| 30 |
-
fn=partial(text_to_image, self.client),
|
| 31 |
-
inputs=text_to_image_prompt,
|
| 32 |
-
outputs=text_to_image_output
|
| 33 |
-
)
|
| 34 |
with gr.Tab("Image-to-text or Image Captioning"):
|
| 35 |
-
|
| 36 |
-
image_to_text_url_input = gr.Textbox(label="Image URL")
|
| 37 |
-
image_to_text_image_request_button = gr.Button("Get Image")
|
| 38 |
-
image_to_text_image_input = gr.Image(label="Image", type="pil")
|
| 39 |
-
image_to_text_image_request_button.click(
|
| 40 |
-
fn=request_image,
|
| 41 |
-
inputs=image_to_text_url_input,
|
| 42 |
-
outputs=image_to_text_image_input
|
| 43 |
-
)
|
| 44 |
-
image_to_text_button = gr.Button("Caption")
|
| 45 |
-
image_to_text_output = gr.List(label="Captions", headers=["Caption"])
|
| 46 |
-
image_to_text_button.click(
|
| 47 |
-
fn=image_to_text,
|
| 48 |
-
inputs=image_to_text_image_input,
|
| 49 |
-
outputs=image_to_text_output
|
| 50 |
-
)
|
| 51 |
with gr.Tab("Image Classification"):
|
| 52 |
-
|
| 53 |
-
image_classification_url_input = gr.Textbox(label="Image URL")
|
| 54 |
-
image_classification_image_request_button = gr.Button("Get Image")
|
| 55 |
-
image_classification_image_input = gr.Image(label="Image",type="pil")
|
| 56 |
-
image_classification_image_request_button.click(
|
| 57 |
-
fn=request_image,
|
| 58 |
-
inputs=image_classification_url_input,
|
| 59 |
-
outputs=image_classification_image_input
|
| 60 |
-
)
|
| 61 |
-
image_classification_button = gr.Button("Classify")
|
| 62 |
-
image_classification_output = gr.Dataframe(label="Classification", headers=["Label", "Probability"], interactive=False)
|
| 63 |
-
image_classification_button.click(
|
| 64 |
-
fn=partial(image_classification, self.client),
|
| 65 |
-
inputs=image_classification_image_input,
|
| 66 |
-
outputs=image_classification_output
|
| 67 |
-
)
|
| 68 |
with gr.Tab("Text-to-speech (TTS)"):
|
| 69 |
-
|
| 70 |
-
text_to_speech_text = gr.Textbox(label="Text")
|
| 71 |
-
text_to_speech_generate_button = gr.Button("Generate")
|
| 72 |
-
text_to_speech_output = gr.Audio(label="Speech")
|
| 73 |
-
text_to_speech_generate_button.click(
|
| 74 |
-
fn=text_to_speech,
|
| 75 |
-
inputs=text_to_speech_text,
|
| 76 |
-
outputs=text_to_speech_output
|
| 77 |
-
)
|
| 78 |
with gr.Tab("Automatic Speech Recognition (ASR)"):
|
| 79 |
-
|
| 80 |
-
audio_transcription_url_input = gr.Textbox(label="Audio URL")
|
| 81 |
-
audio_transcription_audio_request_button = gr.Button("Get Audio")
|
| 82 |
-
audio_transcription_audio_input = gr.Audio(label="Audio")
|
| 83 |
-
audio_transcription_audio_request_button.click(
|
| 84 |
-
fn=request_audio,
|
| 85 |
-
inputs=audio_transcription_url_input,
|
| 86 |
-
outputs=audio_transcription_audio_input
|
| 87 |
-
)
|
| 88 |
-
audio_transcription_generate_button = gr.Button("Transcribe")
|
| 89 |
-
audio_transcription_output = gr.Textbox(label="Text")
|
| 90 |
-
audio_transcription_generate_button.click(
|
| 91 |
-
fn=partial(automatic_speech_recognition, self.client),
|
| 92 |
-
inputs=audio_transcription_audio_input,
|
| 93 |
-
outputs=audio_transcription_output
|
| 94 |
-
)
|
| 95 |
with gr.Tab("Chat"):
|
| 96 |
-
|
| 97 |
-
chatbot_history = gr.State(value=None) # Store the conversation history.
|
| 98 |
-
chatbot_output = gr.Chatbot(label="Conversation")
|
| 99 |
-
chatbot_input = gr.Textbox(label="Your message")
|
| 100 |
-
chatbot_send_button = gr.Button("Send")
|
| 101 |
-
|
| 102 |
-
def chat_interface(message: str, history: list | None, conversation_state: list[dict] | None):
|
| 103 |
-
"""Handle chatbot interaction with Gradio chat format."""
|
| 104 |
-
if not message.strip():
|
| 105 |
-
return history, conversation_state, ""
|
| 106 |
-
response, updated_conversation = chat(message, conversation_state) # Get response from chatbot.
|
| 107 |
-
if history is None: # Update Gradio chat history format: list of [user_message, bot_message] pairs.
|
| 108 |
-
history = []
|
| 109 |
-
history.append([message, response])
|
| 110 |
-
return history, updated_conversation, "" # Clear input field for the next message from the user.
|
| 111 |
-
|
| 112 |
-
chatbot_send_button.click(
|
| 113 |
-
fn=chat_interface,
|
| 114 |
-
inputs=[chatbot_input, chatbot_output, chatbot_history],
|
| 115 |
-
outputs=[chatbot_output, chatbot_history, chatbot_input]
|
| 116 |
-
)
|
| 117 |
-
chatbot_input.submit(
|
| 118 |
-
fn=chat_interface,
|
| 119 |
-
inputs=[chatbot_input, chatbot_output, chatbot_history],
|
| 120 |
-
outputs=[chatbot_output, chatbot_history, chatbot_input]
|
| 121 |
-
)
|
| 122 |
|
| 123 |
demo.launch()
|
| 124 |
|
|
|
|
| 1 |
from dotenv import load_dotenv
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
+
from automatic_speech_recognition import create_asr_tab
|
| 5 |
+
from chatbot import create_chatbot_tab
|
| 6 |
+
from image_classification import create_image_classification_tab
|
| 7 |
+
from image_to_text import create_image_to_text_tab
|
| 8 |
+
from text_to_image import create_text_to_image_tab
|
| 9 |
+
from text_to_speech import create_text_to_speech_tab
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
class App:
|
|
|
|
| 20 |
gr.Markdown("A gallery of building blocks for building AI applications")
|
| 21 |
with gr.Tabs():
|
| 22 |
with gr.Tab("Text-to-image Generation"):
|
| 23 |
+
create_text_to_image_tab(self.client)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
with gr.Tab("Image-to-text or Image Captioning"):
|
| 25 |
+
create_image_to_text_tab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
with gr.Tab("Image Classification"):
|
| 27 |
+
create_image_classification_tab(self.client)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
with gr.Tab("Text-to-speech (TTS)"):
|
| 29 |
+
create_text_to_speech_tab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
with gr.Tab("Automatic Speech Recognition (ASR)"):
|
| 31 |
+
create_asr_tab(self.client)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
with gr.Tab("Chat"):
|
| 33 |
+
create_chatbot_tab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
demo.launch()
|
| 36 |
|
automatic_speech_recognition.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
| 1 |
from huggingface_hub import InferenceClient
|
| 2 |
from os import getenv, path, unlink
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
def automatic_speech_recognition(client: InferenceClient, audio: tuple[int, bytes]) -> str:
|
| 6 |
temp_file_path = None
|
|
@@ -16,3 +18,23 @@ def automatic_speech_recognition(client: InferenceClient, audio: tuple[int, byte
|
|
| 16 |
unlink(temp_file_path)
|
| 17 |
except Exception:
|
| 18 |
pass # Ignore clean-up errors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
from os import getenv, path, unlink
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from utils import save_audio_to_temp_file, get_model_sample_rate, request_audio
|
| 6 |
|
| 7 |
def automatic_speech_recognition(client: InferenceClient, audio: tuple[int, bytes]) -> str:
|
| 8 |
temp_file_path = None
|
|
|
|
| 18 |
unlink(temp_file_path)
|
| 19 |
except Exception:
|
| 20 |
pass # Ignore clean-up errors.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def create_asr_tab(client: InferenceClient):
|
| 24 |
+
"""Create the automatic speech recognition tab."""
|
| 25 |
+
gr.Markdown("Transcribe audio to text.")
|
| 26 |
+
audio_transcription_url_input = gr.Textbox(label="Audio URL")
|
| 27 |
+
audio_transcription_audio_request_button = gr.Button("Get Audio")
|
| 28 |
+
audio_transcription_audio_input = gr.Audio(label="Audio")
|
| 29 |
+
audio_transcription_audio_request_button.click(
|
| 30 |
+
fn=request_audio,
|
| 31 |
+
inputs=audio_transcription_url_input,
|
| 32 |
+
outputs=audio_transcription_audio_input
|
| 33 |
+
)
|
| 34 |
+
audio_transcription_generate_button = gr.Button("Transcribe")
|
| 35 |
+
audio_transcription_output = gr.Textbox(label="Text")
|
| 36 |
+
audio_transcription_generate_button.click(
|
| 37 |
+
fn=partial(automatic_speech_recognition, client),
|
| 38 |
+
inputs=audio_transcription_audio_input,
|
| 39 |
+
outputs=audio_transcription_output
|
| 40 |
+
)
|
chatbot.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
from os import getenv
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
from utils import get_pytorch_device, spaces_gpu
|
| 4 |
|
|
@@ -125,3 +126,33 @@ def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, li
|
|
| 125 |
conversation_history.append({"role": "assistant", "content": response})
|
| 126 |
|
| 127 |
return response, conversation_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from os import getenv
|
| 2 |
+
import gradio as gr
|
| 3 |
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
from utils import get_pytorch_device, spaces_gpu
|
| 5 |
|
|
|
|
| 126 |
conversation_history.append({"role": "assistant", "content": response})
|
| 127 |
|
| 128 |
return response, conversation_history
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def create_chatbot_tab():
|
| 132 |
+
"""Create the chatbot tab."""
|
| 133 |
+
gr.Markdown("Have a conversation with an AI chatbot.")
|
| 134 |
+
chatbot_history = gr.State(value=None) # Store the conversation history.
|
| 135 |
+
chatbot_output = gr.Chatbot(label="Conversation")
|
| 136 |
+
chatbot_input = gr.Textbox(label="Your message")
|
| 137 |
+
chatbot_send_button = gr.Button("Send")
|
| 138 |
+
|
| 139 |
+
def chat_interface(message: str, history: list | None, conversation_state: list[dict] | None):
|
| 140 |
+
"""Handle chatbot interaction with Gradio chat format."""
|
| 141 |
+
if not message.strip():
|
| 142 |
+
return history, conversation_state, ""
|
| 143 |
+
response, updated_conversation = chat(message, conversation_state) # Get response from chatbot.
|
| 144 |
+
if history is None: # Update Gradio chat history format: list of [user_message, bot_message] pairs.
|
| 145 |
+
history = []
|
| 146 |
+
history.append([message, response])
|
| 147 |
+
return history, updated_conversation, "" # Clear input field for the next message from the user.
|
| 148 |
+
|
| 149 |
+
chatbot_send_button.click(
|
| 150 |
+
fn=chat_interface,
|
| 151 |
+
inputs=[chatbot_input, chatbot_output, chatbot_history],
|
| 152 |
+
outputs=[chatbot_output, chatbot_history, chatbot_input]
|
| 153 |
+
)
|
| 154 |
+
chatbot_input.submit(
|
| 155 |
+
fn=chat_interface,
|
| 156 |
+
inputs=[chatbot_input, chatbot_output, chatbot_history],
|
| 157 |
+
outputs=[chatbot_output, chatbot_history, chatbot_input]
|
| 158 |
+
)
|
image_classification.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
|
|
|
| 1 |
from huggingface_hub import InferenceClient
|
| 2 |
from os import path, unlink, getenv
|
|
|
|
| 3 |
from PIL.Image import Image
|
| 4 |
import pandas as pd
|
| 5 |
from pandas import DataFrame
|
| 6 |
-
from utils import save_image_to_temp_file
|
| 7 |
|
| 8 |
|
| 9 |
def image_classification(client: InferenceClient, image: Image) -> DataFrame:
|
|
@@ -22,3 +24,23 @@ def image_classification(client: InferenceClient, image: Image) -> DataFrame:
|
|
| 22 |
unlink(temp_file_path)
|
| 23 |
except Exception:
|
| 24 |
pass # Ignore clean-up errors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
from os import path, unlink, getenv
|
| 4 |
+
import gradio as gr
|
| 5 |
from PIL.Image import Image
|
| 6 |
import pandas as pd
|
| 7 |
from pandas import DataFrame
|
| 8 |
+
from utils import save_image_to_temp_file, request_image
|
| 9 |
|
| 10 |
|
| 11 |
def image_classification(client: InferenceClient, image: Image) -> DataFrame:
|
|
|
|
| 24 |
unlink(temp_file_path)
|
| 25 |
except Exception:
|
| 26 |
pass # Ignore clean-up errors.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def create_image_classification_tab(client: InferenceClient):
|
| 30 |
+
"""Create the image classification tab."""
|
| 31 |
+
gr.Markdown("Classify a recyclable item as one of: cardboard, glass, metal, paper, plastic, or other using [Trash-Net](https://huggingface.co/prithivMLmods/Trash-Net).")
|
| 32 |
+
image_classification_url_input = gr.Textbox(label="Image URL")
|
| 33 |
+
image_classification_image_request_button = gr.Button("Get Image")
|
| 34 |
+
image_classification_image_input = gr.Image(label="Image", type="pil")
|
| 35 |
+
image_classification_image_request_button.click(
|
| 36 |
+
fn=request_image,
|
| 37 |
+
inputs=image_classification_url_input,
|
| 38 |
+
outputs=image_classification_image_input
|
| 39 |
+
)
|
| 40 |
+
image_classification_button = gr.Button("Classify")
|
| 41 |
+
image_classification_output = gr.Dataframe(label="Classification", headers=["Label", "Probability"], interactive=False)
|
| 42 |
+
image_classification_button.click(
|
| 43 |
+
fn=partial(image_classification, client),
|
| 44 |
+
inputs=image_classification_image_input,
|
| 45 |
+
outputs=image_classification_output
|
| 46 |
+
)
|
image_to_text.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import gc
|
| 2 |
from os import getenv
|
|
|
|
| 3 |
from PIL.Image import Image
|
| 4 |
from transformers import AutoProcessor, BlipForConditionalGeneration
|
| 5 |
-
from utils import get_pytorch_device, spaces_gpu
|
| 6 |
|
| 7 |
|
| 8 |
@spaces_gpu
|
|
@@ -20,3 +21,23 @@ def image_to_text(image: Image) -> list[str]:
|
|
| 20 |
del model, inputs
|
| 21 |
gc.collect()
|
| 22 |
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gc
|
| 2 |
from os import getenv
|
| 3 |
+
import gradio as gr
|
| 4 |
from PIL.Image import Image
|
| 5 |
from transformers import AutoProcessor, BlipForConditionalGeneration
|
| 6 |
+
from utils import get_pytorch_device, spaces_gpu, request_image
|
| 7 |
|
| 8 |
|
| 9 |
@spaces_gpu
|
|
|
|
| 21 |
del model, inputs
|
| 22 |
gc.collect()
|
| 23 |
return results
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def create_image_to_text_tab():
|
| 27 |
+
"""Create the image-to-text captioning tab."""
|
| 28 |
+
gr.Markdown("Generate a text description of an image.")
|
| 29 |
+
image_to_text_url_input = gr.Textbox(label="Image URL")
|
| 30 |
+
image_to_text_image_request_button = gr.Button("Get Image")
|
| 31 |
+
image_to_text_image_input = gr.Image(label="Image", type="pil")
|
| 32 |
+
image_to_text_image_request_button.click(
|
| 33 |
+
fn=request_image,
|
| 34 |
+
inputs=image_to_text_url_input,
|
| 35 |
+
outputs=image_to_text_image_input
|
| 36 |
+
)
|
| 37 |
+
image_to_text_button = gr.Button("Caption")
|
| 38 |
+
image_to_text_output = gr.List(label="Captions", headers=["Caption"])
|
| 39 |
+
image_to_text_button.click(
|
| 40 |
+
fn=image_to_text,
|
| 41 |
+
inputs=image_to_text_image_input,
|
| 42 |
+
outputs=image_to_text_output
|
| 43 |
+
)
|
text_to_image.py
CHANGED
|
@@ -1,7 +1,22 @@
|
|
|
|
|
| 1 |
from os import getenv
|
|
|
|
| 2 |
from PIL.Image import Image
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
|
| 5 |
|
| 6 |
def text_to_image(client: InferenceClient, prompt: str) -> Image:
|
| 7 |
return client.text_to_image(prompt, model=getenv("TEXT_TO_IMAGE_MODEL"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
from os import getenv
|
| 3 |
+
import gradio as gr
|
| 4 |
from PIL.Image import Image
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
|
| 7 |
|
| 8 |
def text_to_image(client: InferenceClient, prompt: str) -> Image:
|
| 9 |
return client.text_to_image(prompt, model=getenv("TEXT_TO_IMAGE_MODEL"))
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def create_text_to_image_tab(client: InferenceClient):
|
| 13 |
+
"""Create the text-to-image generation tab."""
|
| 14 |
+
gr.Markdown("Generate an image from a text prompt.")
|
| 15 |
+
text_to_image_prompt = gr.Textbox(label="Prompt")
|
| 16 |
+
text_to_image_generate_button = gr.Button("Generate")
|
| 17 |
+
text_to_image_output = gr.Image(label="Image", type="pil")
|
| 18 |
+
text_to_image_generate_button.click(
|
| 19 |
+
fn=partial(text_to_image, client),
|
| 20 |
+
inputs=text_to_image_prompt,
|
| 21 |
+
outputs=text_to_image_output
|
| 22 |
+
)
|
text_to_speech.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gc
|
| 2 |
from os import getenv
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
from utils import spaces_gpu
|
| 5 |
|
|
@@ -15,3 +16,16 @@ def text_to_speech(text: str) -> tuple[int, bytes]:
|
|
| 15 |
del narrator
|
| 16 |
gc.collect()
|
| 17 |
return (result["sampling_rate"], result["audio"][0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gc
|
| 2 |
from os import getenv
|
| 3 |
+
import gradio as gr
|
| 4 |
from transformers import pipeline
|
| 5 |
from utils import spaces_gpu
|
| 6 |
|
|
|
|
| 16 |
del narrator
|
| 17 |
gc.collect()
|
| 18 |
return (result["sampling_rate"], result["audio"][0])
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def create_text_to_speech_tab():
|
| 22 |
+
"""Create the text-to-speech tab."""
|
| 23 |
+
gr.Markdown("Generate speech from text.")
|
| 24 |
+
text_to_speech_text = gr.Textbox(label="Text")
|
| 25 |
+
text_to_speech_generate_button = gr.Button("Generate")
|
| 26 |
+
text_to_speech_output = gr.Audio(label="Speech")
|
| 27 |
+
text_to_speech_generate_button.click(
|
| 28 |
+
fn=text_to_speech,
|
| 29 |
+
inputs=text_to_speech_text,
|
| 30 |
+
outputs=text_to_speech_output
|
| 31 |
+
)
|