Heng2004 commited on
Commit
a021341
·
verified ·
1 Parent(s): 7502f70

Update model_utils.py

Browse files
Files changed (1) hide show
  1. model_utils.py +5 -5
model_utils.py CHANGED
@@ -31,7 +31,7 @@ model.eval()
31
  # -----------------------------
32
  EMBED_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
33
  embed_model = SentenceTransformer(EMBED_MODEL_NAME)
34
- # move embedding model to same device (optional but faster on GPU)
35
  embed_model = embed_model.to(device)
36
 
37
 
@@ -72,7 +72,7 @@ SYSTEM_PROMPT = (
72
  "ສໍາລັບນັກຮຽນຊັ້ນ ມ.1. "
73
  "ຕອບແຕ່ພາສາລາວ ໃຫ້ຕອບສັ້ນໆ 2–3 ປະໂຫຍກ ແລະເຂົ້າໃຈງ່າຍ. "
74
  "ໃຫ້ອີງຈາກຂໍ້ມູນຂ້າງລຸ່ມນີ້ເທົ່ານັ້ນ. "
75
- "ຖ້າຂໍ້ມູນບໍ່ພຽງພໍ ຫຼືບຍັງບໍ່ຊັດເຈນ ໃຫ້ບອກວ່າບໍ່ແນ່ໃຈ."
76
  )
77
 
78
 
@@ -105,7 +105,7 @@ def retrieve_context(question: str, max_entries: int = MAX_CONTEXT_ENTRIES) -> s
105
  top_entries = [qa_store.ENTRIES[i] for i in top_indices.tolist()]
106
 
107
  # Build context string for the prompt
108
- context_blocks = []
109
  for e in top_entries:
110
  header = (
111
  f"[ຊັ້ນ {e.get('grade','')}, "
@@ -200,8 +200,8 @@ def answer_from_qa(question: str) -> Optional[str]:
200
  best_answer: Optional[str] = None
201
 
202
  for item in qa_store.ALL_QA_KNOWLEDGE:
203
- stored_terms = [t for t in item["norm_q"].split(" ") if len(t) > 1]:
204
- overlap = sum(1 for t in q_terms if t in stored_terms)
205
  if overlap > best_score:
206
  best_score = overlap
207
  best_answer = item["a"]
 
31
  # -----------------------------
32
  EMBED_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
33
  embed_model = SentenceTransformer(EMBED_MODEL_NAME)
34
+ # (optional) move embedding model to same device; OK to leave on CPU if you want
35
  embed_model = embed_model.to(device)
36
 
37
 
 
72
  "ສໍາລັບນັກຮຽນຊັ້ນ ມ.1. "
73
  "ຕອບແຕ່ພາສາລາວ ໃຫ້ຕອບສັ້ນໆ 2–3 ປະໂຫຍກ ແລະເຂົ້າໃຈງ່າຍ. "
74
  "ໃຫ້ອີງຈາກຂໍ້ມູນຂ້າງລຸ່ມນີ້ເທົ່ານັ້ນ. "
75
+ "ຖ້າຂໍ້ມູນບໍ່ພຽງພໍ ຫຼືບໍ່ຊັດເຈນ ໃຫ້ບອກວ່າບໍ່ແນ່ໃຈ."
76
  )
77
 
78
 
 
105
  top_entries = [qa_store.ENTRIES[i] for i in top_indices.tolist()]
106
 
107
  # Build context string for the prompt
108
+ context_blocks: List[str] = []
109
  for e in top_entries:
110
  header = (
111
  f"[ຊັ້ນ {e.get('grade','')}, "
 
200
  best_answer: Optional[str] = None
201
 
202
  for item in qa_store.ALL_QA_KNOWLEDGE:
203
+ stored_terms = [t for t in item["norm_q"].split(" ") if len(t) > 1]
204
+ overlap = sum(1 for t in q_terms if t in stored_terms)
205
  if overlap > best_score:
206
  best_score = overlap
207
  best_answer = item["a"]