File size: 6,508 Bytes
fe6264c cf716c3 fe6264c cf716c3 fe6264c 42ccf80 fe6264c 42ccf80 fe6264c 42ccf80 fe6264c 42ccf80 cf716c3 fe6264c ccd9fcb 42ccf80 ccd9fcb 42ccf80 fe6264c 1406a1d fe6264c 42ccf80 fe6264c 42ccf80 fe6264c 42ccf80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# model_utils.py
from typing import List, Optional
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import qa_store
from loader import load_curriculum, load_manual_qa, rebuild_combined_qa
# -----------------------------
# Model
# -----------------------------
MODEL_NAME = "SeaLLMs/SeaLLMs-v3-1.5B-Chat"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float32,
).to(device)
model.eval()
# Load data once at import time
load_curriculum()
load_manual_qa()
rebuild_combined_qa()
SYSTEM_PROMPT = (
"ທ່ານແມ່ນຜູ້ຊ່ວຍເຫຼືອດ້ານປະຫວັດສາດຂອງປະເທດລາວ "
"ສໍາລັບນັກຮຽນຊັ້ນ ມ.1. "
"ຕອບແຕ່ພາສາລາວ ໃຫ້ຕອບສັ້ນໆ 2–3 ປະໂຫຍກ ແລະເຂົ້າໃຈງ່າຍ. "
"ໃຫ້ອີງຈາກຂໍ້ມູນຂ້າງລຸ່ມນີ້ເທົ່ານັ້ນ. "
"ຖ້າຂໍ້ມູນບໍ່ພຽງພໍ ຫຼືບໍ່ຊັດເຈນ ໃຫ້ບອກວ່າບໍ່ແນ່ໃຈ."
)
def retrieve_context(question: str, max_entries: int = 2) -> str:
"""
Simple keyword retrieval over textbook entries.
"""
if not qa_store.ENTRIES:
return qa_store.RAW_KNOWLEDGE
q = question.lower().strip()
terms = [t for t in re.split(r"\s+", q) if len(t) > 1]
if not terms:
chosen = qa_store.ENTRIES[:max_entries]
return "\n\n".join(
f"[ຊັ້ນ {e.get('grade','')}, ບົດ {e.get('chapter','')}, "
f"ຫົວຂໍ້ {e.get('section','')} – {e.get('title','')}]\n{e['text']}"
for e in chosen
)
scored = []
for e in qa_store.ENTRIES:
text = e.get("text", "")
title = e.get("title", "")
kws = e.get("keywords", [])
topic = e.get("topic", "")
base = (text + " " + title).lower()
score = 0
for t in terms:
score += base.count(t)
for kw in kws:
kw_lower = kw.lower()
for t in terms:
if t in kw_lower:
score += 2
if topic and any(t in topic for t in terms):
score += 1
if score > 0:
scored.append((score, e))
scored.sort(key=lambda x: x[0], reverse=True)
top_entries = [e for _, e in scored[:max_entries]]
if not top_entries:
top_entries = qa_store.ENTRIES[:max_entries]
context_blocks = []
for e in top_entries:
header = (
f"[ຊັ້ນ {e.get('grade','')}, "
f"ບົດ {e.get('chapter','')}, "
f"ຫົວຂໍ້ {e.get('section','')} – {e.get('title','')}]"
)
context_blocks.append(f"{header}\n{e.get('text','')}")
return "\n\n".join(context_blocks)
def _format_history(history: Optional[List]) -> str:
"""
Convert last few chat turns into a Lao conversation snippet
to give the model context for follow-up questions.
Gradio history format: [[user_msg, bot_msg], [user_msg, bot_msg], ...]
"""
if not history:
return ""
# keep only the last 3 turns to avoid very long prompts
recent = history[-3:]
lines = []
for turn in recent:
if not isinstance(turn, (list, tuple)) or len(turn) != 2:
continue
user_msg, bot_msg = turn
lines.append(f"ນັກຮຽນ: {user_msg}")
lines.append(f"ອາຈານ AI: {bot_msg}")
if not lines:
return ""
joined = "\n".join(lines)
return f"ປະຫວັດການສົນທະນາກ່ອນໜ້າ:\n{joined}\n\n"
def build_prompt(question: str, history: Optional[List] = None) -> str:
context = retrieve_context(question)
history_block = _format_history(history)
return f"""{SYSTEM_PROMPT}
{history_block}ຂໍ້ມູນອ້າງອີງ:
{context}
ຄຳຖາມ: {question}
ຄຳຕອບດ້ວຍພາສາລາວ:"""
def generate_answer(question: str, history: Optional[List] = None) -> str:
prompt = build_prompt(question, history)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=160,
do_sample=False,
)
generated_ids = outputs[0][inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
# (your 2–3 sentence enforcement can stay here)
sentences = re.split(r"(?<=[\.?!…])\s+", answer)
short_answer = " ".join(sentences[:3]).strip()
return short_answer if short_answer else answer
def answer_from_qa(question: str) -> Optional[str]:
"""
1) exact match in QA_INDEX
2) fuzzy match via word overlap with ALL_QA_KNOWLEDGE
"""
norm_q = qa_store.normalize_question(question)
if not norm_q:
return None
if norm_q in qa_store.QA_INDEX:
return qa_store.QA_INDEX[norm_q]
q_terms = [t for t in norm_q.split(" ") if len(t) > 1]
if not q_terms:
return None
best_score = 0
best_answer: Optional[str] = None
for item in qa_store.ALL_QA_KNOWLEDGE:
stored_terms = [t for t in item["norm_q"].split(" ") if len(t) > 1]
overlap = sum(1 for t in q_terms if t in stored_terms)
if overlap > best_score:
best_score = overlap
best_answer = item["a"]
# require at least 2 overlapping words to accept fuzzy match
if best_score >= 2:
# optional: log when fuzzy match is used
print(f"[FUZZY MATCH] score={best_score} -> {best_answer[:50]!r}")
return best_answer
return None
def laos_history_bot(message: str, history: List) -> str:
"""
Main chatbot function for Student tab.
"""
if not message.strip():
return "ກະລຸນາພິມຄໍາຖາມກ່ອນ."
direct = answer_from_qa(message)
if direct:
return direct
try:
# ✅ pass history to let LLM understand follow-up questions
answer = generate_answer(message, history)
except Exception as e: # noqa: BLE001
return f"ລະບົບມີບັນຫາ: {e}"
return answer
|