Create aapp.py
Browse files
aapp.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 6 |
+
|
| 7 |
+
# Segformer 모델과 관련 객체를 초기화
|
| 8 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained("nickmuchi/segformer-b4-finetuned-segments-sidewalk")
|
| 9 |
+
model = TFSegformerForSemanticSegmentation.from_pretrained("nickmuchi/segformer-b4-finetuned-segments-sidewalk", from_pt=True)
|
| 10 |
+
|
| 11 |
+
def perform_semantic_segmentation(input_img):
|
| 12 |
+
input_img = Image.fromarray(input_img)
|
| 13 |
+
|
| 14 |
+
# 이미지를 처리하고 모델에 전달
|
| 15 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
| 16 |
+
outputs = model(**inputs)
|
| 17 |
+
logits = outputs.logits
|
| 18 |
+
|
| 19 |
+
# 모델 출력을 처리하여 시맨틱 분할 결과를 얻음
|
| 20 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
| 21 |
+
logits = tf.image.resize(logits, input_img.size[::-1])
|
| 22 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
| 23 |
+
|
| 24 |
+
return input_img, seg.numpy()
|
| 25 |
+
|
| 26 |
+
def segformer_interface(input_image):
|
| 27 |
+
original_image, segmentation_map = perform_semantic_segmentation(input_image)
|
| 28 |
+
return original_image, segmentation_map
|
| 29 |
+
|
| 30 |
+
# Gradio 데모 구성
|
| 31 |
+
demo = gr.Interface(
|
| 32 |
+
fn=segformer_interface,
|
| 33 |
+
inputs=gr.Image(shape=(400, 600)),
|
| 34 |
+
outputs=[gr.Image(type="plot"), gr.Image(type="plot")], # 원본 이미지 및 시맨틱 분할 맵을 출력
|
| 35 |
+
examples=["side-1.jpg", "side-2.jpg", "side-3.jpg"],
|
| 36 |
+
allow_flagging='never'
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
demo.launch()
|