Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,9 +27,11 @@ from src.pipelines.pipeline_kandinsky_subject_prior import KandinskyPriorPipelin
|
|
| 27 |
from diffusers import DiffusionPipeline
|
| 28 |
from PIL import Image
|
| 29 |
|
|
|
|
|
|
|
| 30 |
class Model:
|
| 31 |
def __init__(self):
|
| 32 |
-
self.device =
|
| 33 |
|
| 34 |
self.text_encoder = (
|
| 35 |
CLIPTextModelWithProjection.from_pretrained(
|
|
@@ -39,7 +41,7 @@ class Model:
|
|
| 39 |
)
|
| 40 |
.eval()
|
| 41 |
.requires_grad_(False)
|
| 42 |
-
).to(
|
| 43 |
|
| 44 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
| 45 |
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
|
@@ -99,7 +101,7 @@ class Model:
|
|
| 99 |
plt.savefig('image_testt2.png')
|
| 100 |
plt.show()
|
| 101 |
|
| 102 |
-
mask_img = self.image_processor(image, return_tensors="pt").to(
|
| 103 |
vision_feats = self.vision_encoder(
|
| 104 |
**mask_img
|
| 105 |
).image_embeds
|
|
@@ -111,7 +113,7 @@ class Model:
|
|
| 111 |
print(indices)
|
| 112 |
|
| 113 |
if image2 is not None:
|
| 114 |
-
mask_img2 = self.image_processor(image2, return_tensors="pt").to(
|
| 115 |
vision_feats2 = self.vision_encoder(
|
| 116 |
**mask_img2
|
| 117 |
).image_embeds
|
|
@@ -123,9 +125,9 @@ class Model:
|
|
| 123 |
print(indices)
|
| 124 |
|
| 125 |
text_feats = {
|
| 126 |
-
"prompt_embeds": new_feats.text_embeds.to(
|
| 127 |
-
"text_encoder_hidden_states": torch.tensor(new_last_hidden_states).unsqueeze(0).to(
|
| 128 |
-
"text_mask": txt_items["attention_mask"].to(
|
| 129 |
}
|
| 130 |
return text_feats
|
| 131 |
|
|
@@ -219,4 +221,4 @@ def create_demo():
|
|
| 219 |
|
| 220 |
if __name__ == '__main__':
|
| 221 |
demo = create_demo()
|
| 222 |
-
demo.queue(
|
|
|
|
| 27 |
from diffusers import DiffusionPipeline
|
| 28 |
from PIL import Image
|
| 29 |
|
| 30 |
+
__device__ = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
|
| 32 |
class Model:
|
| 33 |
def __init__(self):
|
| 34 |
+
self.device = __device__
|
| 35 |
|
| 36 |
self.text_encoder = (
|
| 37 |
CLIPTextModelWithProjection.from_pretrained(
|
|
|
|
| 41 |
)
|
| 42 |
.eval()
|
| 43 |
.requires_grad_(False)
|
| 44 |
+
).to(self.device)
|
| 45 |
|
| 46 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
| 47 |
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
|
|
|
| 101 |
plt.savefig('image_testt2.png')
|
| 102 |
plt.show()
|
| 103 |
|
| 104 |
+
mask_img = self.image_processor(image, return_tensors="pt").to(__device__)
|
| 105 |
vision_feats = self.vision_encoder(
|
| 106 |
**mask_img
|
| 107 |
).image_embeds
|
|
|
|
| 113 |
print(indices)
|
| 114 |
|
| 115 |
if image2 is not None:
|
| 116 |
+
mask_img2 = self.image_processor(image2, return_tensors="pt").to(__device__)
|
| 117 |
vision_feats2 = self.vision_encoder(
|
| 118 |
**mask_img2
|
| 119 |
).image_embeds
|
|
|
|
| 125 |
print(indices)
|
| 126 |
|
| 127 |
text_feats = {
|
| 128 |
+
"prompt_embeds": new_feats.text_embeds.to(__device__),
|
| 129 |
+
"text_encoder_hidden_states": torch.tensor(new_last_hidden_states).unsqueeze(0).to(__device__),
|
| 130 |
+
"text_mask": txt_items["attention_mask"].to(__device__),
|
| 131 |
}
|
| 132 |
return text_feats
|
| 133 |
|
|
|
|
| 221 |
|
| 222 |
if __name__ == '__main__':
|
| 223 |
demo = create_demo()
|
| 224 |
+
demo.queue(api_open=False).launch(share=True)
|