Spaces:
Sleeping
Sleeping
Update knowledge_base.py
Browse files- knowledge_base.py +14 -2
knowledge_base.py
CHANGED
|
@@ -6,7 +6,8 @@ from langchain.vectorstores import Chroma
|
|
| 6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
from langchain.docstore.document import Document
|
| 8 |
|
| 9 |
-
CHROMA_DIR = "chroma"
|
|
|
|
| 10 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 11 |
|
| 12 |
# Set this to your actual file on HF
|
|
@@ -49,4 +50,15 @@ def create_vectorstore(chunks):
|
|
| 49 |
|
| 50 |
def load_vectorstore():
|
| 51 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
from langchain.docstore.document import Document
|
| 8 |
|
| 9 |
+
CHROMA_DIR = os.path.abspath("chroma")
|
| 10 |
+
print("📂 Loading vectorstore from:", CHROMA_DIR)
|
| 11 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 12 |
|
| 13 |
# Set this to your actual file on HF
|
|
|
|
| 50 |
|
| 51 |
def load_vectorstore():
|
| 52 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
| 53 |
+
db = Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
sample = db.get()["documents"][:5]
|
| 57 |
+
print("✅ Sample documents from vectorstore:")
|
| 58 |
+
for i, s in enumerate(sample):
|
| 59 |
+
print(f"[{i+1}] {s[:100]}...") # print first 100 chars
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"❌ Error loading documents: {e}")
|
| 62 |
+
|
| 63 |
+
return db
|
| 64 |
+
|