Spaces:
Sleeping
Sleeping
Rename agent.py to knowledge_base.py
Browse files- agent.py +0 -26
- knowledge_base.py +36 -0
agent.py
DELETED
|
@@ -1,26 +0,0 @@
|
|
| 1 |
-
from meal_loader import documents
|
| 2 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 3 |
-
from langchain_community.vectorstores import FAISS
|
| 4 |
-
from langchain_community.llms import HuggingFaceHub
|
| 5 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 6 |
-
from langchain.memory import ConversationBufferMemory
|
| 7 |
-
|
| 8 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 9 |
-
db = FAISS.from_documents(documents, embeddings)
|
| 10 |
-
retriever = db.as_retriever(search_kwargs={"k": 3})
|
| 11 |
-
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.3, "max_new_tokens": 500})
|
| 12 |
-
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 13 |
-
|
| 14 |
-
qa_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)
|
| 15 |
-
|
| 16 |
-
def generate_response(message, history, preferences):
|
| 17 |
-
prompt = f"""
|
| 18 |
-
You are a meal plan assistant. The user has the following preferences:
|
| 19 |
-
- Diet: {', '.join(preferences['diet'])}
|
| 20 |
-
- Goal: {preferences['goal']}
|
| 21 |
-
- Duration: {preferences['weeks']} week(s)
|
| 22 |
-
|
| 23 |
-
User query: {message}
|
| 24 |
-
"""
|
| 25 |
-
result = qa_chain({"question": prompt})
|
| 26 |
-
return result["answer"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
knowledge_base.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# knowledge_base.py
|
| 2 |
+
import os
|
| 3 |
+
import fitz # PyMuPDF
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.vectorstores import Chroma
|
| 6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.docstore.document import Document
|
| 8 |
+
|
| 9 |
+
CHROMA_DIR = "chroma"
|
| 10 |
+
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def load_and_chunk_pdfs(folder_path):
|
| 14 |
+
documents = []
|
| 15 |
+
for filename in os.listdir(folder_path):
|
| 16 |
+
if filename.endswith(".pdf"):
|
| 17 |
+
path = os.path.join(folder_path, filename)
|
| 18 |
+
doc = fitz.open(path)
|
| 19 |
+
text = "\n".join(page.get_text() for page in doc)
|
| 20 |
+
documents.append(Document(page_content=text, metadata={"source": filename}))
|
| 21 |
+
|
| 22 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 23 |
+
chunks = splitter.split_documents(documents)
|
| 24 |
+
return chunks
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def create_vectorstore(chunks):
|
| 28 |
+
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
| 29 |
+
db = Chroma.from_documents(chunks, embeddings, persist_directory=CHROMA_DIR)
|
| 30 |
+
db.persist()
|
| 31 |
+
return db
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def load_vectorstore():
|
| 35 |
+
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
| 36 |
+
return Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
|