Spaces:
Running
on
Zero
Running
on
Zero
File size: 60,978 Bytes
1b3ab7b 1e4c9bc 595e0a5 1b3ab7b 1e4c9bc d5249d6 1e4c9bc 595e0a5 d5249d6 595e0a5 1e4c9bc 595e0a5 1e4c9bc d5249d6 595e0a5 1e4c9bc 595e0a5 1e4c9bc d5249d6 1e4c9bc 595e0a5 1b3ab7b 595e0a5 1b3ab7b 595e0a5 1b3ab7b 595e0a5 1b3ab7b 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b d5249d6 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc 1b3ab7b 1e4c9bc 595e0a5 1e4c9bc d5249d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
# %%writefile semantic_breed_recommender.py
import random
import hashlib
import numpy as np
import sqlite3
import re
import traceback
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sentence_transformers import SentenceTransformer
import torch
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score, UnifiedScoringSystem, calculate_unified_breed_scores
from query_understanding import QueryUnderstandingEngine, analyze_user_query
from constraint_manager import ConstraintManager, apply_breed_constraints
from multi_head_scorer import MultiHeadScorer, score_breed_candidates, BreedScore
from score_calibrator import ScoreCalibrator, calibrate_breed_scores
from config_manager import get_config_manager, get_standardized_breed_data
from semantic_vector_manager import SemanticVectorManager, BreedDescriptionVector
from user_query_analyzer import UserQueryAnalyzer
from matching_score_calculator import MatchingScoreCalculator
from smart_breed_filter import apply_smart_filtering
class SemanticBreedRecommender:
"""
增強的基於 SBERT 的語義品種推薦系統
"""
def __init__(self):
"""初始化語義品種推薦器"""
# 初始化語義vector的管理器
self.vector_manager = SemanticVectorManager()
# 初始化用戶查詢分析器
self.query_analyzer = UserQueryAnalyzer(self.vector_manager.get_breed_list())
# 初始化評分計算器
self.score_calculator = MatchingScoreCalculator(self.vector_manager.get_breed_list())
self.model_name = self.vector_manager.model_name
self.sbert_model = self.vector_manager.get_sbert_model()
self.breed_vectors = self.vector_manager.get_breed_vectors()
self.breed_list = self.vector_manager.get_breed_list()
self.comparative_keywords = self.query_analyzer.comparative_keywords
# 初始化增強系統組件(if 可用)
try:
self.query_engine = QueryUnderstandingEngine()
print("QueryUnderstandingEngine initialized")
self.constraint_manager = ConstraintManager()
print("ConstraintManager initialized")
self.multi_head_scorer = None
self.score_calibrator = ScoreCalibrator()
print("ScoreCalibrator initialized")
self.config_manager = get_config_manager()
# 如果 SBERT 模型可用,初始化多頭評分器
if self.sbert_model:
self.multi_head_scorer = MultiHeadScorer(self.sbert_model)
print("Multi-head scorer initialized with SBERT model")
else:
print("WARNING: SBERT model not available, multi_head_scorer will be None")
except Exception as e:
print(f"Error initializing enhanced system components: {str(e)}")
print(traceback.format_exc())
self.query_engine = None
self.constraint_manager = None
self.multi_head_scorer = None
self.score_calibrator = None
self.config_manager = None
def _parse_comparative_preferences(self, user_input: str) -> Dict[str, float]:
"""解析比較性偏好表達"""
return self.query_analyzer.parse_comparative_preferences(user_input)
def _extract_lifestyle_keywords(self, user_input: str) -> Dict[str, List[str]]:
"""增強的生活方式關鍵字提取,具有更好的模式匹配"""
return self.query_analyzer.extract_lifestyle_keywords(user_input)
def _apply_size_distribution_correction(self, recommendations: List[Dict]) -> List[Dict]:
"""應用尺寸分佈修正以防止大型品種偏差"""
return self.score_calculator.apply_size_distribution_correction(recommendations)
def _normalize_breed_size(self, size: str) -> str:
"""標準化品種尺寸到標準分類"""
return self.score_calculator._normalize_breed_size(size)
def _parse_user_requirements(self, user_input: str) -> Dict[str, Any]:
"""更準確地解析用戶需求"""
return self.query_analyzer.parse_user_requirements(user_input)
def _apply_hard_constraints(self, breed: str, user_input: str, breed_characteristics: Dict[str, Any]) -> float:
"""增強硬約束,具有更嚴格的懲罰"""
return self.score_calculator.apply_hard_constraints(breed, user_input, breed_characteristics)
def _calculate_lifestyle_bonus(self, breed_characteristics: Dict[str, Any],
lifestyle_keywords: Dict[str, List[str]]) -> float:
"""增強生活方式匹配獎勵計算"""
return self.score_calculator.calculate_lifestyle_bonus(breed_characteristics, lifestyle_keywords)
def _apply_intelligent_trait_matching(self, recommendations: List[Dict], user_input: str) -> List[Dict]:
"""基於增強關鍵字提取和數據庫挖掘應用智能特徵匹配"""
return self.score_calculator.apply_intelligent_trait_matching(recommendations, user_input)
def _get_breed_info_from_standardized(self, standardized_info) -> Dict[str, Any]:
"""將標準化品種信息轉換為字典格式"""
return self.score_calculator.get_breed_info_from_standardized(standardized_info)
def _get_fallback_recommendations(self, top_k: int = 15) -> List[Dict[str, Any]]:
"""當增強系統失敗時獲取備用推薦"""
return self.score_calculator.get_fallback_recommendations(top_k)
def _get_fallback_scoring_with_constraints(self, user_input: str,
passed_breeds: set,
dimensions: 'QueryDimensions',
top_k: int = 15) -> List[Dict[str, Any]]:
"""
當 multi_head_scorer 不可用時的回退評分方法
仍然用 constraint_manager 的過濾結果,並產生自然分佈的分數
"""
print(f"Fallback scoring for {len(passed_breeds)} filtered breeds")
recommendations = []
user_text = user_input.lower()
# 提取用戶需求關鍵詞
lifestyle_keywords = self._extract_lifestyle_keywords(user_input)
for breed in passed_breeds:
breed_info = get_dog_description(breed.replace(' ', '_')) or {}
if not breed_info:
continue
# 計算多維度匹配分數
dimension_scores = self._calculate_comprehensive_dimension_scores(
breed, breed_info, user_text, dimensions, lifestyle_keywords
)
# 基於維度分數計算加權總分
weights = self._get_dimension_weights_from_query(user_text, dimensions)
weighted_sum = sum(dimension_scores.get(dim, 0.7) * weights.get(dim, 1.0)
for dim in dimension_scores)
total_weight = sum(weights.get(dim, 1.0) for dim in dimension_scores)
final_score = weighted_sum / total_weight if total_weight > 0 else 0.7
# 確保分數在合理範圍內(允許高分,非常契合的品種可超過 90%)
final_score = max(0.45, min(0.98, final_score))
dimension_scores['overall'] = final_score
recommendation = {
'breed': breed.replace('_', ' '),
'rank': 0,
'overall_score': final_score,
'final_score': final_score,
'scores': dimension_scores,
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', ''),
'search_type': 'fallback_with_constraints',
}
recommendations.append(recommendation)
# 按分數排序
recommendations.sort(key=lambda x: -x['final_score'])
# 更新排名
for i, rec in enumerate(recommendations[:top_k]):
rec['rank'] = i + 1
print(f"Generated {len(recommendations[:top_k])} fallback recommendations")
return recommendations[:top_k]
def _calculate_comprehensive_dimension_scores(self, breed: str, breed_info: Dict,
user_text: str, dimensions,
lifestyle_keywords: Dict) -> Dict[str, float]:
"""
計算全面的維度分數,產生自然分佈的評分
"""
scores = {}
temperament = breed_info.get('Temperament', '').lower()
size = breed_info.get('Size', 'Medium').lower()
exercise_needs = breed_info.get('Exercise Needs', 'Moderate').lower()
grooming_needs = breed_info.get('Grooming Needs', 'Moderate').lower()
good_with_children = breed_info.get('Good with Children', 'Yes')
care_level = breed_info.get('Care Level', 'Moderate').lower()
description = breed_info.get('Description', '').lower()
# 1. 空間相容性
space_score = 0.7
if 'apartment' in user_text or 'small space' in user_text:
if 'small' in size or 'toy' in size:
space_score = 0.96
elif 'medium' in size:
space_score = 0.78
elif 'large' in size:
space_score = 0.52
else:
space_score = 0.45
elif 'house' in user_text or 'yard' in user_text:
if 'large' in size:
space_score = 0.92
elif 'medium' in size:
space_score = 0.88
else:
space_score = 0.82
scores['space'] = space_score
# 2. 運動相容性
exercise_score = 0.7
user_wants_high = any(w in user_text for w in ['energetic', 'active', 'running', 'hiking', 'athletic'])
user_wants_low = any(w in user_text for w in ['low maintenance', 'relaxed', 'calm', 'couch'])
if user_wants_high:
if 'very high' in exercise_needs:
exercise_score = 0.98
elif 'high' in exercise_needs:
exercise_score = 0.92
elif 'moderate' in exercise_needs:
exercise_score = 0.68
else:
exercise_score = 0.48
elif user_wants_low:
if 'low' in exercise_needs:
exercise_score = 0.96
elif 'moderate' in exercise_needs:
exercise_score = 0.78
elif 'high' in exercise_needs:
exercise_score = 0.52
else:
exercise_score = 0.42
else:
# 中等運動需求
if 'moderate' in exercise_needs:
exercise_score = 0.88
elif 'low' in exercise_needs or 'high' in exercise_needs:
exercise_score = 0.72
else:
exercise_score = 0.65
scores['exercise'] = exercise_score
# 3. 美容需求相容性
grooming_score = 0.7
user_wants_low_maintenance = any(w in user_text for w in ['low maintenance', 'easy care', 'minimal grooming'])
if user_wants_low_maintenance:
if 'low' in grooming_needs or 'minimal' in grooming_needs:
grooming_score = 0.96
elif 'moderate' in grooming_needs:
grooming_score = 0.75
else:
grooming_score = 0.50
else:
if 'low' in grooming_needs:
grooming_score = 0.85
elif 'moderate' in grooming_needs:
grooming_score = 0.78
else:
grooming_score = 0.70
scores['grooming'] = grooming_score
# 4. 噪音相容性
noise_score = 0.7
user_wants_quiet = any(w in user_text for w in ['quiet', 'silent', 'noise', 'bark', 'neighbors'])
if user_wants_quiet:
# 從 breed_noise_info 獲取噪音資訊
noise_info = breed_noise_info.get(breed.replace(' ', '_'), {})
noise_level = noise_info.get('noise_level', 'Moderate').lower()
if 'low' in noise_level or 'quiet' in noise_level:
noise_score = 0.97
elif 'moderate' in noise_level:
noise_score = 0.72
elif 'high' in noise_level:
noise_score = 0.45
else:
# 根據性格推斷
if any(w in temperament for w in ['calm', 'quiet', 'gentle', 'reserved']):
noise_score = 0.88
elif any(w in temperament for w in ['alert', 'vocal', 'energetic']):
noise_score = 0.55
else:
noise_score = 0.70
scores['noise'] = noise_score
# 5. 家庭相容性
family_score = 0.7
has_family_context = any(w in user_text for w in ['kids', 'children', 'family', 'child'])
if has_family_context:
if good_with_children == 'Yes':
family_score = 0.94
# 額外加分:溫和性格
if any(w in temperament for w in ['gentle', 'friendly', 'patient', 'loving']):
family_score = min(0.98, family_score + 0.04)
elif good_with_children == 'No':
family_score = 0.32
else:
family_score = 0.62
else:
family_score = 0.76 if good_with_children == 'Yes' else 0.70
scores['family'] = family_score
# 6. 經驗相容性
experience_score = 0.7
is_beginner = any(w in user_text for w in ['first dog', 'first time', 'beginner', 'new owner', 'never had'])
if is_beginner:
# 評估品種對新手的友好程度
if 'low' in care_level or 'easy' in care_level:
experience_score = 0.94
elif 'moderate' in care_level:
experience_score = 0.78
else:
experience_score = 0.52
# 性格調整
if any(w in temperament for w in ['eager to please', 'trainable', 'intelligent', 'friendly']):
experience_score = min(0.98, experience_score + 0.08)
if any(w in temperament for w in ['stubborn', 'independent', 'strong-willed']):
experience_score = max(0.38, experience_score - 0.18)
else:
experience_score = 0.80
scores['experience'] = experience_score
# 7. 健康分數(基於壽命和品種特性)
health_score = 0.75
lifespan = breed_info.get('Lifespan', '10-12 years')
try:
# 解析壽命
years = [int(y) for y in lifespan.replace(' years', '').split('-') if y.strip().isdigit()]
if years:
avg_lifespan = sum(years) / len(years)
if avg_lifespan >= 14:
health_score = 0.94
elif avg_lifespan >= 12:
health_score = 0.85
elif avg_lifespan >= 10:
health_score = 0.75
else:
health_score = 0.62
except:
pass
scores['health'] = health_score
return scores
def _get_dimension_weights_from_query(self, user_text: str, dimensions) -> Dict[str, float]:
"""
根據用戶查詢動態計算維度權重
"""
weights = {
'space': 1.0,
'exercise': 1.0,
'grooming': 1.0,
'noise': 1.0,
'family': 1.0,
'experience': 1.0,
'health': 0.8
}
# 根據 dimensions 的 priority 調整權重
if hasattr(dimensions, 'dimension_priorities'):
priority_map = getattr(dimensions, 'dimension_priorities', {})
for dim, priority in priority_map.items():
if dim in weights:
weights[dim] = priority
# 映射不同名稱
if dim == 'size':
weights['space'] = max(weights['space'], priority)
if dim == 'family':
weights['family'] = max(weights['family'], priority)
# 根據關鍵詞強化權重
if any(w in user_text for w in ['quiet', 'noise', 'bark', 'neighbors', 'thin walls']):
weights['noise'] = max(weights['noise'], 2.2)
if any(w in user_text for w in ['kids', 'children', 'family', 'child']):
weights['family'] = max(weights['family'], 2.0)
if any(w in user_text for w in ['first', 'beginner', 'new owner']):
weights['experience'] = max(weights['experience'], 2.0)
if any(w in user_text for w in ['apartment', 'small space', 'studio']):
weights['space'] = max(weights['space'], 1.8)
if any(w in user_text for w in ['energetic', 'active', 'running', 'hiking']):
weights['exercise'] = max(weights['exercise'], 2.0)
if any(w in user_text for w in ['low maintenance', 'easy care']):
weights['grooming'] = max(weights['grooming'], 1.8)
return weights
def _calculate_real_dimension_scores(self, breed: str, breed_info: Dict,
user_input: str, overall_score: float) -> Dict[str, float]:
"""
計算真實的維度分數(基於品種特性和用戶需求)
這個方法取代了假分數生成器,提供真實的評分
Args:
breed: 品種名稱
breed_info: 品種資訊字典
user_input: 用戶輸入文字
overall_score: 總體分數
Returns:
Dict[str, float]: 維度分數字典
"""
if not breed_info:
breed_info = {}
user_text = user_input.lower()
temperament = breed_info.get('Temperament', '').lower()
size = breed_info.get('Size', 'Medium').lower()
exercise_needs = breed_info.get('Exercise Needs', 'Moderate').lower()
grooming_needs = breed_info.get('Grooming Needs', 'Moderate').lower()
good_with_children = breed_info.get('Good with Children', 'Yes')
care_level = breed_info.get('Care Level', 'Moderate').lower()
scores = {}
# 1. Space Compatibility (空間相容性)
space_score = 0.7
if 'apartment' in user_text or 'small' in user_text:
if 'small' in size:
space_score = 0.9
elif 'medium' in size:
space_score = 0.7
elif 'large' in size:
space_score = 0.5
elif 'giant' in size:
space_score = 0.3
elif 'house' in user_text or 'yard' in user_text:
if 'large' in size or 'giant' in size:
space_score = 0.85
else:
space_score = 0.8
scores['space'] = space_score
# 2. Exercise Compatibility (運動相容性)
exercise_score = 0.7
if 'low' in exercise_needs or 'minimal' in exercise_needs:
if any(term in user_text for term in ['work full time', 'busy', 'low exercise', 'not much exercise']):
exercise_score = 0.9
else:
exercise_score = 0.75
elif 'high' in exercise_needs or 'very high' in exercise_needs:
if any(term in user_text for term in ['active', 'running', 'hiking', 'exercise']):
exercise_score = 0.9
elif any(term in user_text for term in ['work full time', 'busy']):
exercise_score = 0.5
else:
exercise_score = 0.65
else: # moderate
exercise_score = 0.75
scores['exercise'] = exercise_score
# 3. Grooming/Maintenance Compatibility (美容/維護相容性)
grooming_score = 0.7
if 'low' in grooming_needs:
if any(term in user_text for term in ['low maintenance', 'low-maintenance', 'easy care', 'minimal grooming']):
grooming_score = 0.9
else:
grooming_score = 0.8
elif 'high' in grooming_needs:
if any(term in user_text for term in ['low maintenance', 'low-maintenance', 'easy care']):
grooming_score = 0.4
else:
grooming_score = 0.6
# 敏感品種需要額外照顧
if 'sensitive' in temperament:
grooming_score -= 0.1
# 特殊品種需要額外護理
breed_lower = breed.lower()
if any(term in breed_lower for term in ['italian', 'greyhound', 'whippet', 'hairless']):
if any(term in user_text for term in ['low maintenance', 'low-maintenance', 'easy']):
grooming_score -= 0.15
scores['grooming'] = max(0.2, grooming_score)
# 4. Experience Compatibility (經驗相容性) - 關鍵維度!
experience_score = 0.7
is_beginner = any(term in user_text for term in ['first dog', 'first time', 'beginner', 'new to dogs', 'never owned', 'never had'])
if is_beginner:
# 新手評估
if 'low' in care_level:
experience_score = 0.85
elif 'moderate' in care_level:
experience_score = 0.65
elif 'high' in care_level:
experience_score = 0.45
# 性格懲罰 - 對新手很重要
difficult_traits = ['sensitive', 'stubborn', 'independent', 'dominant', 'aggressive', 'nervous', 'shy', 'timid', 'alert']
for trait in difficult_traits:
if trait in temperament:
if trait == 'sensitive':
experience_score -= 0.15 # 敏感性格對新手很具挑戰
elif trait == 'aggressive':
experience_score -= 0.25
elif trait in ['stubborn', 'independent', 'dominant']:
experience_score -= 0.12
else:
experience_score -= 0.08
# 友善性格獎勵
easy_traits = ['friendly', 'gentle', 'eager to please', 'patient', 'calm', 'outgoing']
for trait in easy_traits:
if trait in temperament:
experience_score += 0.08
# 易於訓練的加分
if any(term in user_text for term in ['easy to train', 'trainable']):
if any(term in temperament for term in ['eager to please', 'intelligent', 'trainable']):
experience_score += 0.1
elif any(term in temperament for term in ['stubborn', 'independent']):
experience_score -= 0.1
else:
# 有經驗的飼主
experience_score = 0.8
scores['experience'] = max(0.2, min(0.95, experience_score))
# 5. Noise Compatibility (噪音相容性)
noise_score = 0.75
if any(term in user_text for term in ['quiet', 'apartment', 'neighbors']):
if any(term in temperament for term in ['quiet', 'calm', 'gentle']):
noise_score = 0.9
elif any(term in temperament for term in ['alert', 'vocal', 'barking']):
noise_score = 0.5
scores['noise'] = noise_score
# 6. Family Compatibility (家庭相容性)
family_score = 0.7
if any(term in user_text for term in ['children', 'kids', 'family']):
if good_with_children == 'Yes' or good_with_children == True:
family_score = 0.9
if any(term in temperament for term in ['gentle', 'patient', 'friendly']):
family_score = 0.95
else:
family_score = 0.35
scores['family'] = family_score
# 7. Overall
scores['overall'] = overall_score
return scores
def get_enhanced_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
增強的多維度語義品種推薦
Args:
user_input: 用戶的自然語言描述
top_k: 返回的推薦數量
Returns:
增強評分的推薦品種列表
"""
try:
# 階段 1: 查詢理解
if self.query_engine:
dimensions = self.query_engine.analyze_query(user_input)
print(f"Query dimensions detected: {len(dimensions.spatial_constraints + dimensions.activity_level + dimensions.noise_preferences + dimensions.size_preferences + dimensions.family_context + dimensions.maintenance_level + dimensions.special_requirements)} total dimensions")
else:
print("Query engine not available, using basic analysis")
return self.get_semantic_recommendations(user_input, top_k)
# 階段 2: 應用約束
if self.constraint_manager:
filter_result = self.constraint_manager.apply_constraints(dimensions, min_candidates=max(8, top_k))
print(f"Constraint filtering: {len(self.breed_list)} -> {len(filter_result.passed_breeds)} candidates")
if not filter_result.passed_breeds:
error_msg = f"No dog breeds match your requirements after applying constraints. Applied constraints: {filter_result.applied_constraints}. Consider relaxing some requirements."
print(f"ERROR: {error_msg}")
raise ValueError(error_msg)
else:
print("Constraint manager not available, using all breeds")
filter_result = type('FilterResult', (), {
'passed_breeds': self.breed_list,
'applied_constraints': [],
'relaxed_constraints': [],
'warnings': []
})()
# 階段 3: 多頭評分
if self.multi_head_scorer:
breed_scores = self.multi_head_scorer.score_breeds(filter_result.passed_breeds, dimensions)
print(f"Multi-head scoring completed for {len(breed_scores)} breeds")
# Debug: 顯示前5名的分數和維度breakdown
for bs in breed_scores[:5]:
print(f" {bs.breed_name}: final={bs.final_score:.3f}, breakdown={bs.dimensional_breakdown}")
else:
# 使用回退評分,但仍然尊重 constraint 過濾結果
print("Multi-head scorer not available, using fallback scoring with constraint filtering")
fallback_results = self._get_fallback_scoring_with_constraints(
user_input, filter_result.passed_breeds, dimensions, top_k
)
return fallback_results
# 階段 4: 分數校準
if self.score_calibrator:
breed_score_tuples = [(score.breed_name, score.final_score) for score in breed_scores]
calibration_result = self.score_calibrator.calibrate_scores(breed_score_tuples)
print(f"Score calibration: method={calibration_result.calibration_method}")
else:
print("Score calibrator not available, using raw scores")
calibration_result = type('CalibrationResult', (), {
'score_mapping': {score.breed_name: score.final_score for score in breed_scores},
'calibration_method': 'none'
})()
# 階段 5: 生成最終推薦
final_recommendations = []
for i, breed_score in enumerate(breed_scores[:top_k]):
breed_name = breed_score.breed_name
# 獲取校準後的分數
calibrated_score = calibration_result.score_mapping.get(breed_name, breed_score.final_score)
# 獲取標準化品種信息
if self.config_manager:
standardized_info = get_standardized_breed_data(breed_name.replace(' ', '_'))
if standardized_info:
breed_info = self._get_breed_info_from_standardized(standardized_info)
else:
breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}
else:
breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}
# 將 dimensional_breakdown 轉換為 UI 需要的 scores 格式
breakdown = breed_score.dimensional_breakdown or {}
ui_scores = {
'space': breakdown.get('spatial_compatibility', 0.7),
'exercise': breakdown.get('activity_compatibility', 0.7),
'grooming': breakdown.get('maintenance_compatibility', 0.7),
'experience': breakdown.get('experience_compatibility', 0.7),
'noise': breakdown.get('noise_compatibility', 0.7),
'family': breakdown.get('family_compatibility', 0.7),
'health': breakdown.get('health_compatibility', 0.7),
'overall': calibrated_score
}
recommendation = {
'breed': breed_name,
'rank': i + 1,
'overall_score': calibrated_score,
'final_score': calibrated_score,
'semantic_score': breed_score.semantic_component,
'attribute_score': breed_score.attribute_component,
'bidirectional_bonus': breed_score.bidirectional_bonus,
'confidence_score': breed_score.confidence_score,
'dimensional_breakdown': breed_score.dimensional_breakdown,
'scores': ui_scores, # UI 需要的格式
'explanation': breed_score.explanation,
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', ''),
'search_type': 'enhanced_description',
'calibration_method': calibration_result.calibration_method,
'applied_constraints': filter_result.applied_constraints,
'relaxed_constraints': filter_result.relaxed_constraints,
'warnings': filter_result.warnings
}
final_recommendations.append(recommendation)
# 應用尺寸分佈修正
corrected_recommendations = self._apply_size_distribution_correction(final_recommendations)
# 階段 6: 應用智能特徵匹配增強
intelligence_enhanced_recommendations = self._apply_intelligent_trait_matching(corrected_recommendations, user_input)
print(f"Generated {len(intelligence_enhanced_recommendations)} enhanced semantic recommendations with intelligent trait matching")
return intelligence_enhanced_recommendations
except Exception as e:
print(f"Error in enhanced semantic recommendations: {str(e)}")
print(traceback.format_exc())
# 回退到原始方法
return self.get_semantic_recommendations(user_input, top_k)
def get_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
基於自然語言描述獲取品種推薦
Args:
user_input: 用戶的自然語言描述
top_k: 返回的推薦數量
Returns:
推薦品種列表
"""
try:
print(f"Processing user input: {user_input}")
# 檢查模型是否可用 - 如果不可用,則報錯
if self.sbert_model is None:
error_msg = "SBERT model not available. This could be due to:\n• Model download failed\n• Insufficient memory\n• Network connectivity issues\n\nPlease check your environment and try again."
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg)
# 生成用戶輸入嵌入
user_embedding = self.vector_manager.encode_text(user_input)
# 解析比較性偏好
comparative_prefs = self._parse_comparative_preferences(user_input)
# 提取生活方式關鍵字
lifestyle_keywords = self._extract_lifestyle_keywords(user_input)
# 計算與所有品種的相似度並應用約束
similarities = []
for breed, breed_vector in self.breed_vectors.items():
# 首先應用硬約束
constraint_penalty = self._apply_hard_constraints(breed, user_input, breed_vector.characteristics)
# 跳過違反關鍵約束的品種
if constraint_penalty <= -1.0: # 完全取消資格
continue
# 基本語義相似度
semantic_score = cosine_similarity(
[user_embedding],
[breed_vector.embedding]
)[0][0]
# 比較性偏好加權
comparative_bonus = comparative_prefs.get(breed, 0.0)
# 生活方式匹配獎勵
lifestyle_bonus = self._calculate_lifestyle_bonus(
breed_vector.characteristics,
lifestyle_keywords
)
# 應用約束懲罰
lifestyle_bonus += constraint_penalty
# 更好分佈的增強組合分數
# 應用指數縮放以創建更自然的分數分佈
base_semantic = semantic_score ** 0.8 # 輕微壓縮高分
enhanced_lifestyle = lifestyle_bonus * 2.0 # 放大生活方式匹配
enhanced_comparative = comparative_bonus * 1.5 # 放大品種偏好
final_score = (
base_semantic * 0.55 +
enhanced_comparative * 0.30 +
enhanced_lifestyle * 0.15
)
# 添加小的隨機變化以自然地打破平局
random.seed(hash(breed)) # 對相同品種保持一致
final_score += random.uniform(-0.03, 0.03)
# 確保最終分數不超過 1.0
final_score = min(1.0, final_score)
similarities.append({
'breed': breed,
'score': final_score,
'semantic_score': semantic_score,
'comparative_bonus': comparative_bonus,
'lifestyle_bonus': lifestyle_bonus
})
# 計算平衡分佈的標準化顯示分數
breed_display_scores = []
# 首先,收集所有語義分數以進行標準化
all_semantic_scores = [breed_data['semantic_score'] for breed_data in similarities]
semantic_mean = np.mean(all_semantic_scores)
semantic_std = np.std(all_semantic_scores) if len(all_semantic_scores) > 1 else 1.0
for breed_data in similarities:
breed = breed_data['breed']
base_semantic = breed_data['semantic_score']
# 標準化語義分數以防止極端異常值
if semantic_std > 0:
normalized_semantic = (base_semantic - semantic_mean) / semantic_std
normalized_semantic = max(-2.0, min(2.0, normalized_semantic)) # 限制在 2 個標準差
scaled_semantic = 0.5 + (normalized_semantic * 0.1) # 映射到 0.3-0.7 範圍
else:
scaled_semantic = 0.5
# 獲取品種特徵
breed_info = get_dog_description(breed) if breed != 'Unknown' else {}
breed_size = breed_info.get('Size', '').lower() if breed_info else ''
exercise_needs = breed_info.get('Exercise Needs', '').lower() if breed_info else ''
# 計算特徵匹配分數(比純語義相似度更重要)
feature_score = 0.0
user_text = user_input.lower()
# 尺寸和空間需求(高權重)
if any(term in user_text for term in ['apartment', 'small', 'limited space']):
if 'small' in breed_size:
feature_score += 0.25
elif 'medium' in breed_size:
feature_score += 0.05
elif 'large' in breed_size or 'giant' in breed_size:
feature_score -= 0.30
# 運動需求(高權重)
if any(term in user_text for term in ['low exercise', 'minimal exercise', "doesn't need", 'not much']):
if 'low' in exercise_needs or 'minimal' in exercise_needs:
feature_score += 0.20
elif 'high' in exercise_needs or 'very high' in exercise_needs:
feature_score -= 0.25
elif any(term in user_text for term in ['active', 'high exercise', 'running', 'hiking']):
if 'high' in exercise_needs:
feature_score += 0.20
elif 'low' in exercise_needs:
feature_score -= 0.15
# 家庭相容性
if any(term in user_text for term in ['children', 'kids', 'family']):
good_with_children = breed_info.get('Good with Children', '') if breed_info else ''
if good_with_children == 'Yes':
feature_score += 0.10
elif good_with_children == 'No':
feature_score -= 0.20
# 平衡權重組合分數
final_score = (
scaled_semantic * 0.35 + # 降低語義權重
feature_score * 0.45 + # 增加特徵匹配權重
breed_data['lifestyle_bonus'] * 0.15 +
breed_data['comparative_bonus'] * 0.05
)
# 計算基本相容性分數
base_compatibility = final_score
# 應用自然分佈的動態評分
if base_compatibility >= 0.9: # 例外匹配
score_range = (0.92, 0.98)
position = (base_compatibility - 0.9) / 0.1
elif base_compatibility >= 0.75: # 優秀匹配
score_range = (0.85, 0.91)
position = (base_compatibility - 0.75) / 0.15
elif base_compatibility >= 0.6: # 良好匹配
score_range = (0.75, 0.84)
position = (base_compatibility - 0.6) / 0.15
elif base_compatibility >= 0.45: # 公平匹配
score_range = (0.65, 0.74)
position = (base_compatibility - 0.45) / 0.15
elif base_compatibility >= 0.3: # 較差匹配
score_range = (0.55, 0.64)
position = (base_compatibility - 0.3) / 0.15
else: # 非常差的匹配
score_range = (0.45, 0.54)
position = max(0, base_compatibility / 0.3)
# 計算帶自然變化的最終分數
score_span = score_range[1] - score_range[0]
base_score = score_range[0] + (position * score_span)
# 添加控制的隨機變化以進行自然排名
random.seed(hash(breed + user_input[:15]))
variation = random.uniform(-0.015, 0.015)
display_score = round(max(0.45, min(0.98, base_score + variation)), 3)
breed_display_scores.append({
'breed': breed,
'display_score': display_score,
'semantic_score': base_semantic,
'comparative_bonus': breed_data['comparative_bonus'],
'lifestyle_bonus': breed_data['lifestyle_bonus']
})
# 計算真實維度分數並整合到排序中
for breed_data in breed_display_scores:
breed = breed_data['breed']
breed_info = get_dog_description(breed)
real_scores = self._calculate_real_dimension_scores(
breed, breed_info, user_input, breed_data['display_score']
)
breed_data['real_scores'] = real_scores
# 計算加權的最終分數(考慮維度分數)
# 原始顯示分數權重 50%,維度分數平均權重 50%
dim_scores = [real_scores.get('space', 0.7), real_scores.get('exercise', 0.7),
real_scores.get('grooming', 0.7), real_scores.get('experience', 0.7),
real_scores.get('noise', 0.7)]
avg_dim_score = sum(dim_scores) / len(dim_scores)
# 對低維度分數施加懲罰
min_dim_score = min(dim_scores)
penalty = 0
if min_dim_score < 0.5:
penalty = (0.5 - min_dim_score) * 0.3 # 最低分數懲罰
# 最終排序分數
breed_data['adjusted_score'] = (
breed_data['display_score'] * 0.5 +
avg_dim_score * 0.5 -
penalty
)
# 按調整後的分數排序
breed_display_scores.sort(key=lambda x: x['adjusted_score'], reverse=True)
top_breeds = breed_display_scores[:top_k]
# 轉換為標準推薦格式
recommendations = []
for i, breed_data in enumerate(top_breeds):
breed = breed_data['breed']
adjusted_score = breed_data['adjusted_score']
real_scores = breed_data['real_scores']
# 獲取詳細信息
breed_info = get_dog_description(breed)
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1,
'overall_score': adjusted_score, # 使用調整後的分數
'final_score': adjusted_score, # 確保 final_score 與 overall_score 匹配
'semantic_score': breed_data['semantic_score'],
'comparative_bonus': breed_data['comparative_bonus'],
'lifestyle_bonus': breed_data['lifestyle_bonus'],
'size': breed_info.get('Size', 'Unknown') if breed_info else 'Unknown',
'temperament': breed_info.get('Temperament', '') if breed_info else '',
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate',
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate',
'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes',
'lifespan': breed_info.get('Lifespan', '10-12 years') if breed_info else '10-12 years',
'description': breed_info.get('Description', '') if breed_info else '',
'search_type': 'description',
'scores': real_scores # 添加真實的維度分數
}
recommendations.append(recommendation)
print(f"Generated {len(recommendations)} semantic recommendations")
return recommendations
except Exception as e:
print(f"Failed to generate semantic recommendations: {str(e)}")
print(traceback.format_exc())
return []
def get_enhanced_recommendations_with_unified_scoring(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
增強推薦方法 - 使用完整的多頭評分系統
這個方法使用:
- QueryUnderstandingEngine: 解析用戶意圖
- PriorityDetector: 檢測維度優先級
- MultiHeadScorer: 多維度評分
- DynamicWeightCalculator: 動態權重分配
"""
try:
print(f"Processing enhanced recommendation with multi-head scoring: {user_input[:50]}...")
# 使用完整的增強語義推薦系統(包含 multi_head_scorer)
return self.get_enhanced_semantic_recommendations(user_input, top_k)
except Exception as e:
error_msg = f"Enhanced recommendation error: {str(e)}. Please check your description."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def _analyze_user_description_enhanced(self, user_description: str) -> Dict[str, Any]:
"""增強用戶描述分析"""
return self.query_analyzer.analyze_user_description_enhanced(user_description)
def _create_user_preferences_from_analysis_enhanced(self, analysis: Dict[str, Any]) -> UserPreferences:
"""從分析結果創建用戶偏好物件"""
return self.query_analyzer.create_user_preferences_from_analysis_enhanced(analysis)
def _get_candidate_breeds_enhanced(self, analysis: Dict[str, Any]) -> List[str]:
"""獲取候選品種列表"""
return self.query_analyzer.get_candidate_breeds_enhanced(analysis)
def _apply_constraint_filtering_enhanced(self, breed: str, analysis: Dict[str, Any]) -> float:
"""應用約束過濾,返回調整分數"""
# 這個方法需要從 score_calculator 調用適當的方法
# 但原始實現中沒有這個具體方法,所以我們提供基本實現
constraint_penalty = 0.0
breed_info = get_dog_description(breed)
if not breed_info:
return constraint_penalty
# 低噪音要求
if 'low_noise' in analysis['constraint_requirements']:
noise_info = breed_noise_info.get(breed, {})
noise_level = noise_info.get('noise_level', 'moderate').lower()
if 'high' in noise_level:
constraint_penalty -= 0.3 # 嚴重扣分
elif 'low' in noise_level:
constraint_penalty += 0.1 # 輕微加分
# 公寓適合性
if 'apartment_suitable' in analysis['constraint_requirements']:
size = breed_info.get('Size', '').lower()
exercise_needs = breed_info.get('Exercise Needs', '').lower()
if size in ['large', 'giant']:
constraint_penalty -= 0.2
elif size in ['small', 'tiny']:
constraint_penalty += 0.1
if 'high' in exercise_needs:
constraint_penalty -= 0.15
# 兒童友善性
if 'child_friendly' in analysis['constraint_requirements']:
good_with_children = breed_info.get('Good with Children', 'Unknown')
if good_with_children == 'Yes':
constraint_penalty += 0.15
elif good_with_children == 'No':
constraint_penalty -= 0.4 # 嚴重扣分
return constraint_penalty
def _get_breed_characteristics_enhanced(self, breed: str) -> Dict[str, Any]:
"""獲取品種特徵"""
return self.score_calculator.get_breed_characteristics_enhanced(breed)
def get_hybrid_recommendations(self, user_description: str,
user_preferences: Optional[Any] = None,
top_k: int = 15) -> List[Dict[str, Any]]:
"""
混合推薦:結合語義匹配與傳統評分
Args:
user_description: 用戶的自然語言描述
user_preferences: 可選的結構化偏好設置
top_k: 返回的推薦數量
Returns:
混合推薦結果
"""
try:
# 獲取語義推薦
semantic_recommendations = self.get_semantic_recommendations(user_description, top_k * 2)
if not user_preferences:
return semantic_recommendations[:top_k]
# 與傳統評分結合
hybrid_results = []
for semantic_rec in semantic_recommendations:
breed_name = semantic_rec['breed'].replace(' ', '_')
# 計算傳統相容性分數
traditional_score = calculate_compatibility_score(user_preferences, breed_name)
# 混合分數(語義 40% + 傳統 60%)
hybrid_score = (
semantic_rec['overall_score'] * 0.4 +
traditional_score * 0.6
)
semantic_rec['hybrid_score'] = hybrid_score
semantic_rec['traditional_score'] = traditional_score
hybrid_results.append(semantic_rec)
# 按混合分數重新排序
hybrid_results.sort(key=lambda x: x['hybrid_score'], reverse=True)
# 更新排名
for i, result in enumerate(hybrid_results[:top_k]):
result['rank'] = i + 1
result['overall_score'] = result['hybrid_score']
return hybrid_results[:top_k]
except Exception as e:
print(f"Hybrid recommendation failed: {str(e)}")
print(traceback.format_exc())
return self.get_semantic_recommendations(user_description, top_k)
def get_breed_recommendations_by_description(user_description: str,
user_preferences: Optional[Any] = None,
top_k: int = 15) -> List[Dict[str, Any]]:
"""基於描述獲取品種推薦的主要介面函數"""
try:
print("Initializing Enhanced SemanticBreedRecommender...")
recommender = SemanticBreedRecommender()
# 優先使用整合統一評分系統的增強推薦
print("Using enhanced recommendation system with unified scoring")
results = recommender.get_enhanced_recommendations_with_unified_scoring(user_description, top_k)
if results and len(results) > 0:
print(f"Generated {len(results)} enhanced recommendations successfully")
return results
else:
# 如果增強系統無結果,嘗試原有增強系統
print("Enhanced unified system returned no results, trying original enhanced system")
results = recommender.get_enhanced_semantic_recommendations(user_description, top_k)
if results and len(results) > 0:
return results
else:
# 最後回退到標準系統
print("All enhanced systems failed, using standard system")
if user_preferences:
results = recommender.get_hybrid_recommendations(user_description, user_preferences, top_k)
else:
results = recommender.get_semantic_recommendations(user_description, top_k)
if not results:
error_msg = f"All recommendation systems failed to generate results. Please check your input description and try again. Error details may be in the console."
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg)
return results
except Exception as e:
error_msg = f"Critical error in recommendation system: {str(e)}. Please check your input and system configuration."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def get_enhanced_recommendations_with_unified_scoring(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
模組層級便利函數 - 使用完整的多頭評分系統
這個函數呼叫 SemanticBreedRecommender 的增強推薦方法,使用:
- QueryUnderstandingEngine: 解析用戶意圖
- PriorityDetector: 檢測維度優先級
- MultiHeadScorer: 多維度評分
- DynamicWeightCalculator: 動態權重分配
- SmartBreedFilter: 智慧風險過濾(只對真正危害用戶的情況干預)
如果增強系統失敗,會自動回退到基本語義推薦
"""
try:
print(f"Processing description-based recommendation with multi-head scoring: {user_description[:50]}...")
# 創建推薦器實例
recommender = SemanticBreedRecommender()
# 檢查 SBERT 模型是否可用
if not recommender.vector_manager.is_model_available():
print("SBERT model not available, using basic text matching...")
results = _get_basic_text_matching_recommendations(user_description, top_k, recommender)
# 應用智慧過濾
results = apply_smart_filtering(results, user_description)
return results
# 嘗試使用完整的增強語義推薦系統
try:
results = recommender.get_enhanced_semantic_recommendations(user_description, top_k)
if results:
# 應用智慧過濾
results = apply_smart_filtering(results, user_description)
return results
else:
print("Enhanced recommendations returned empty, falling back to basic semantic...")
except Exception as enhanced_error:
print(f"Enhanced recommendation failed: {str(enhanced_error)}, falling back to basic semantic...")
print(traceback.format_exc())
# 回退到基本語義推薦
try:
results = recommender.get_semantic_recommendations(user_description, top_k)
if results:
# 應用智慧過濾
results = apply_smart_filtering(results, user_description)
return results
except Exception as semantic_error:
print(f"Basic semantic recommendation also failed: {str(semantic_error)}")
# 最後回退到基本文字匹配
print("All semantic methods failed, using basic text matching as last resort...")
results = _get_basic_text_matching_recommendations(user_description, top_k, recommender)
# 應用智慧過濾
results = apply_smart_filtering(results, user_description)
return results
except Exception as e:
error_msg = f"Error in semantic recommendation system: {str(e)}. Please check your input and try again."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def _get_basic_text_matching_recommendations(user_description: str, top_k: int = 15, recommender=None) -> List[Dict[str, Any]]:
"""基本文字匹配推薦(SBERT 不可用時的後備方案)"""
try:
print("Using basic text matching as fallback...")
# 如果沒有提供 recommender,創建一個新的
if recommender is None:
recommender = SemanticBreedRecommender()
# 基本關鍵字匹配
keywords = user_description.lower().split()
breed_scores = []
# 從數據庫獲取品種清單或使用預設清單
try:
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog LIMIT 50")
basic_breeds = [row[0] for row in cursor.fetchall()]
cursor.close()
conn.close()
# 過濾掉野生動物品種
basic_breeds = [breed for breed in basic_breeds if breed != 'Dhole']
except Exception as e:
print(f"Could not load breed list from database: {str(e)}")
# 後備品種清單
basic_breeds = [
'Labrador_Retriever', 'Golden_Retriever', 'German_Shepherd', 'French_Bulldog',
'Border_Collie', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier',
'Dachshund', 'Boxer', 'Siberian_Husky', 'Great_Dane', 'Pomeranian', 'Shih_Tzu',
'Maltese_Dog', 'Chihuahua', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
'Japanese_Spaniel', 'Toy_Terrier', 'Affenpinscher', 'Pekingese', 'Lhasa'
]
# 應用約束過濾 - 關鍵修復!
try:
from constraint_manager import ConstraintManager
from query_understanding import QueryUnderstandingEngine
query_engine = QueryUnderstandingEngine()
dimensions = query_engine.analyze_query(user_description)
constraint_manager = ConstraintManager()
filter_result = constraint_manager.apply_constraints(dimensions)
# 只保留通過約束的品種
allowed_breeds = filter_result.passed_breeds
filtered_count = len(basic_breeds)
basic_breeds = [b for b in basic_breeds if b in allowed_breeds]
print(f"Constraint filtering: {filtered_count} -> {len(basic_breeds)} breeds")
# 記錄被過濾的原因(用於調試)
for breed, reason in filter_result.filtered_breeds.items():
if breed in ['Italian_Greyhound', 'Rottweiler', 'Malinois']:
print(f" Filtered {breed}: {reason}")
except Exception as e:
print(f"Warning: Could not apply constraints: {str(e)}")
for breed in basic_breeds:
breed_info = get_dog_description(breed) or {}
breed_text = f"{breed} {breed_info.get('Temperament', '')} {breed_info.get('Size', '')} {breed_info.get('Description', '')}".lower()
# 計算關鍵字匹配分數
matches = sum(1 for keyword in keywords if keyword in breed_text)
base_score = min(0.95, 0.3 + (matches / len(keywords)) * 0.6)
# 應用增強匹配邏輯
enhanced_score = recommender.score_calculator.calculate_enhanced_matching_score(
breed, breed_info, user_description, base_score
)
breed_scores.append((breed, enhanced_score['final_score'], breed_info, enhanced_score))
# 按分數排序
breed_scores.sort(key=lambda x: x[1], reverse=True)
recommendations = []
for i, (breed, final_score, breed_info, enhanced_score) in enumerate(breed_scores[:top_k]):
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1,
'overall_score': final_score,
'final_score': final_score,
'semantic_score': enhanced_score.get('weighted_score', final_score),
'comparative_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
'lifestyle_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', 'Unknown'),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Unknown'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', 'No description available'),
'search_type': 'description',
'scores': enhanced_score.get('dimension_scores', {
'space': final_score * 0.9,
'exercise': final_score * 0.85,
'grooming': final_score * 0.8,
'experience': final_score * 0.75,
'noise': final_score * 0.7,
'family': final_score * 0.65
})
}
recommendations.append(recommendation)
return recommendations
except Exception as e:
error_msg = f"Error in basic text matching: {str(e)}"
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg) from e |