File size: 60,978 Bytes
1b3ab7b
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
 
 
1b3ab7b
1e4c9bc
 
 
d5249d6
1e4c9bc
 
 
595e0a5
d5249d6
595e0a5
1e4c9bc
595e0a5
 
1e4c9bc
d5249d6
595e0a5
1e4c9bc
595e0a5
 
 
 
 
1e4c9bc
d5249d6
1e4c9bc
595e0a5
1b3ab7b
595e0a5
1b3ab7b
595e0a5
 
1b3ab7b
595e0a5
 
 
 
 
 
1b3ab7b
 
 
 
 
595e0a5
 
 
 
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
595e0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
1b3ab7b
 
 
 
 
 
d5249d6
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
 
 
 
 
 
 
1e4c9bc
595e0a5
 
 
 
1e4c9bc
595e0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
1b3ab7b
 
 
1e4c9bc
1b3ab7b
 
 
 
 
 
1e4c9bc
595e0a5
 
 
 
 
 
 
 
 
 
 
1e4c9bc
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
 
 
 
 
 
1e4c9bc
 
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
1b3ab7b
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
 
1e4c9bc
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
 
 
 
1e4c9bc
 
 
 
 
 
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
595e0a5
1e4c9bc
595e0a5
 
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
595e0a5
1e4c9bc
 
 
1b3ab7b
 
1e4c9bc
595e0a5
1e4c9bc
 
 
 
 
1b3ab7b
 
1e4c9bc
 
 
 
 
 
 
 
 
 
1b3ab7b
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
1b3ab7b
 
 
 
 
 
 
 
 
1e4c9bc
1b3ab7b
1e4c9bc
1b3ab7b
 
1e4c9bc
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
595e0a5
 
 
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
595e0a5
1e4c9bc
595e0a5
1e4c9bc
 
 
 
 
 
 
595e0a5
1e4c9bc
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
595e0a5
1e4c9bc
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
 
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
1b3ab7b
1e4c9bc
1b3ab7b
1e4c9bc
 
1b3ab7b
595e0a5
1e4c9bc
1b3ab7b
 
 
 
1e4c9bc
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
1b3ab7b
 
 
 
 
 
 
 
 
1e4c9bc
1b3ab7b
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
595e0a5
 
 
 
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
595e0a5
 
1e4c9bc
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5249d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
# %%writefile semantic_breed_recommender.py
import random
import hashlib
import numpy as np
import sqlite3
import re
import traceback
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sentence_transformers import SentenceTransformer
import torch
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score, UnifiedScoringSystem, calculate_unified_breed_scores
from query_understanding import QueryUnderstandingEngine, analyze_user_query
from constraint_manager import ConstraintManager, apply_breed_constraints
from multi_head_scorer import MultiHeadScorer, score_breed_candidates, BreedScore
from score_calibrator import ScoreCalibrator, calibrate_breed_scores
from config_manager import get_config_manager, get_standardized_breed_data
from semantic_vector_manager import SemanticVectorManager, BreedDescriptionVector
from user_query_analyzer import UserQueryAnalyzer
from matching_score_calculator import MatchingScoreCalculator
from smart_breed_filter import apply_smart_filtering

class SemanticBreedRecommender:
    """
    增強的基於 SBERT 的語義品種推薦系統 
    """

    def __init__(self):
        """初始化語義品種推薦器"""
        # 初始化語義vector的管理器
        self.vector_manager = SemanticVectorManager()

        # 初始化用戶查詢分析器
        self.query_analyzer = UserQueryAnalyzer(self.vector_manager.get_breed_list())

        # 初始化評分計算器
        self.score_calculator = MatchingScoreCalculator(self.vector_manager.get_breed_list())

        self.model_name = self.vector_manager.model_name
        self.sbert_model = self.vector_manager.get_sbert_model()
        self.breed_vectors = self.vector_manager.get_breed_vectors()
        self.breed_list = self.vector_manager.get_breed_list()
        self.comparative_keywords = self.query_analyzer.comparative_keywords

        # 初始化增強系統組件(if 可用)
        try:
            self.query_engine = QueryUnderstandingEngine()
            print("QueryUnderstandingEngine initialized")
            self.constraint_manager = ConstraintManager()
            print("ConstraintManager initialized")
            self.multi_head_scorer = None
            self.score_calibrator = ScoreCalibrator()
            print("ScoreCalibrator initialized")
            self.config_manager = get_config_manager()

            # 如果 SBERT 模型可用,初始化多頭評分器
            if self.sbert_model:
                self.multi_head_scorer = MultiHeadScorer(self.sbert_model)
                print("Multi-head scorer initialized with SBERT model")
            else:
                print("WARNING: SBERT model not available, multi_head_scorer will be None")
        except Exception as e:
            print(f"Error initializing enhanced system components: {str(e)}")
            print(traceback.format_exc())
            self.query_engine = None
            self.constraint_manager = None
            self.multi_head_scorer = None
            self.score_calibrator = None
            self.config_manager = None

    def _parse_comparative_preferences(self, user_input: str) -> Dict[str, float]:
        """解析比較性偏好表達"""
        return self.query_analyzer.parse_comparative_preferences(user_input)

    def _extract_lifestyle_keywords(self, user_input: str) -> Dict[str, List[str]]:
        """增強的生活方式關鍵字提取,具有更好的模式匹配"""
        return self.query_analyzer.extract_lifestyle_keywords(user_input)

    def _apply_size_distribution_correction(self, recommendations: List[Dict]) -> List[Dict]:
        """應用尺寸分佈修正以防止大型品種偏差"""
        return self.score_calculator.apply_size_distribution_correction(recommendations)

    def _normalize_breed_size(self, size: str) -> str:
        """標準化品種尺寸到標準分類"""
        return self.score_calculator._normalize_breed_size(size)

    def _parse_user_requirements(self, user_input: str) -> Dict[str, Any]:
        """更準確地解析用戶需求"""
        return self.query_analyzer.parse_user_requirements(user_input)

    def _apply_hard_constraints(self, breed: str, user_input: str, breed_characteristics: Dict[str, Any]) -> float:
        """增強硬約束,具有更嚴格的懲罰"""
        return self.score_calculator.apply_hard_constraints(breed, user_input, breed_characteristics)

    def _calculate_lifestyle_bonus(self, breed_characteristics: Dict[str, Any],
                                 lifestyle_keywords: Dict[str, List[str]]) -> float:
        """增強生活方式匹配獎勵計算"""
        return self.score_calculator.calculate_lifestyle_bonus(breed_characteristics, lifestyle_keywords)

    def _apply_intelligent_trait_matching(self, recommendations: List[Dict], user_input: str) -> List[Dict]:
        """基於增強關鍵字提取和數據庫挖掘應用智能特徵匹配"""
        return self.score_calculator.apply_intelligent_trait_matching(recommendations, user_input)

    def _get_breed_info_from_standardized(self, standardized_info) -> Dict[str, Any]:
        """將標準化品種信息轉換為字典格式"""
        return self.score_calculator.get_breed_info_from_standardized(standardized_info)

    def _get_fallback_recommendations(self, top_k: int = 15) -> List[Dict[str, Any]]:
        """當增強系統失敗時獲取備用推薦"""
        return self.score_calculator.get_fallback_recommendations(top_k)

    def _get_fallback_scoring_with_constraints(self, user_input: str,
                                               passed_breeds: set,
                                               dimensions: 'QueryDimensions',
                                               top_k: int = 15) -> List[Dict[str, Any]]:
        """
        當 multi_head_scorer 不可用時的回退評分方法
        仍然用 constraint_manager 的過濾結果,並產生自然分佈的分數
        """
        print(f"Fallback scoring for {len(passed_breeds)} filtered breeds")

        recommendations = []
        user_text = user_input.lower()

        # 提取用戶需求關鍵詞
        lifestyle_keywords = self._extract_lifestyle_keywords(user_input)

        for breed in passed_breeds:
            breed_info = get_dog_description(breed.replace(' ', '_')) or {}
            if not breed_info:
                continue

            # 計算多維度匹配分數
            dimension_scores = self._calculate_comprehensive_dimension_scores(
                breed, breed_info, user_text, dimensions, lifestyle_keywords
            )

            # 基於維度分數計算加權總分
            weights = self._get_dimension_weights_from_query(user_text, dimensions)
            weighted_sum = sum(dimension_scores.get(dim, 0.7) * weights.get(dim, 1.0)
                             for dim in dimension_scores)
            total_weight = sum(weights.get(dim, 1.0) for dim in dimension_scores)
            final_score = weighted_sum / total_weight if total_weight > 0 else 0.7

            # 確保分數在合理範圍內(允許高分,非常契合的品種可超過 90%)
            final_score = max(0.45, min(0.98, final_score))
            dimension_scores['overall'] = final_score

            recommendation = {
                'breed': breed.replace('_', ' '),
                'rank': 0,
                'overall_score': final_score,
                'final_score': final_score,
                'scores': dimension_scores,
                'size': breed_info.get('Size', 'Unknown'),
                'temperament': breed_info.get('Temperament', ''),
                'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
                'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
                'good_with_children': breed_info.get('Good with Children', 'Yes'),
                'lifespan': breed_info.get('Lifespan', '10-12 years'),
                'description': breed_info.get('Description', ''),
                'search_type': 'fallback_with_constraints',
            }

            recommendations.append(recommendation)

        # 按分數排序
        recommendations.sort(key=lambda x: -x['final_score'])

        # 更新排名
        for i, rec in enumerate(recommendations[:top_k]):
            rec['rank'] = i + 1

        print(f"Generated {len(recommendations[:top_k])} fallback recommendations")
        return recommendations[:top_k]

    def _calculate_comprehensive_dimension_scores(self, breed: str, breed_info: Dict,
                                                   user_text: str, dimensions,
                                                   lifestyle_keywords: Dict) -> Dict[str, float]:
        """
        計算全面的維度分數,產生自然分佈的評分
        """
        scores = {}
        temperament = breed_info.get('Temperament', '').lower()
        size = breed_info.get('Size', 'Medium').lower()
        exercise_needs = breed_info.get('Exercise Needs', 'Moderate').lower()
        grooming_needs = breed_info.get('Grooming Needs', 'Moderate').lower()
        good_with_children = breed_info.get('Good with Children', 'Yes')
        care_level = breed_info.get('Care Level', 'Moderate').lower()
        description = breed_info.get('Description', '').lower()

        # 1. 空間相容性
        space_score = 0.7
        if 'apartment' in user_text or 'small space' in user_text:
            if 'small' in size or 'toy' in size:
                space_score = 0.96
            elif 'medium' in size:
                space_score = 0.78
            elif 'large' in size:
                space_score = 0.52
            else:
                space_score = 0.45
        elif 'house' in user_text or 'yard' in user_text:
            if 'large' in size:
                space_score = 0.92
            elif 'medium' in size:
                space_score = 0.88
            else:
                space_score = 0.82
        scores['space'] = space_score

        # 2. 運動相容性
        exercise_score = 0.7
        user_wants_high = any(w in user_text for w in ['energetic', 'active', 'running', 'hiking', 'athletic'])
        user_wants_low = any(w in user_text for w in ['low maintenance', 'relaxed', 'calm', 'couch'])

        if user_wants_high:
            if 'very high' in exercise_needs:
                exercise_score = 0.98
            elif 'high' in exercise_needs:
                exercise_score = 0.92
            elif 'moderate' in exercise_needs:
                exercise_score = 0.68
            else:
                exercise_score = 0.48
        elif user_wants_low:
            if 'low' in exercise_needs:
                exercise_score = 0.96
            elif 'moderate' in exercise_needs:
                exercise_score = 0.78
            elif 'high' in exercise_needs:
                exercise_score = 0.52
            else:
                exercise_score = 0.42
        else:
            # 中等運動需求
            if 'moderate' in exercise_needs:
                exercise_score = 0.88
            elif 'low' in exercise_needs or 'high' in exercise_needs:
                exercise_score = 0.72
            else:
                exercise_score = 0.65
        scores['exercise'] = exercise_score

        # 3. 美容需求相容性
        grooming_score = 0.7
        user_wants_low_maintenance = any(w in user_text for w in ['low maintenance', 'easy care', 'minimal grooming'])

        if user_wants_low_maintenance:
            if 'low' in grooming_needs or 'minimal' in grooming_needs:
                grooming_score = 0.96
            elif 'moderate' in grooming_needs:
                grooming_score = 0.75
            else:
                grooming_score = 0.50
        else:
            if 'low' in grooming_needs:
                grooming_score = 0.85
            elif 'moderate' in grooming_needs:
                grooming_score = 0.78
            else:
                grooming_score = 0.70
        scores['grooming'] = grooming_score

        # 4. 噪音相容性
        noise_score = 0.7
        user_wants_quiet = any(w in user_text for w in ['quiet', 'silent', 'noise', 'bark', 'neighbors'])

        if user_wants_quiet:
            # 從 breed_noise_info 獲取噪音資訊
            noise_info = breed_noise_info.get(breed.replace(' ', '_'), {})
            noise_level = noise_info.get('noise_level', 'Moderate').lower()

            if 'low' in noise_level or 'quiet' in noise_level:
                noise_score = 0.97
            elif 'moderate' in noise_level:
                noise_score = 0.72
            elif 'high' in noise_level:
                noise_score = 0.45
            else:
                # 根據性格推斷
                if any(w in temperament for w in ['calm', 'quiet', 'gentle', 'reserved']):
                    noise_score = 0.88
                elif any(w in temperament for w in ['alert', 'vocal', 'energetic']):
                    noise_score = 0.55
                else:
                    noise_score = 0.70
        scores['noise'] = noise_score

        # 5. 家庭相容性
        family_score = 0.7
        has_family_context = any(w in user_text for w in ['kids', 'children', 'family', 'child'])

        if has_family_context:
            if good_with_children == 'Yes':
                family_score = 0.94
                # 額外加分:溫和性格
                if any(w in temperament for w in ['gentle', 'friendly', 'patient', 'loving']):
                    family_score = min(0.98, family_score + 0.04)
            elif good_with_children == 'No':
                family_score = 0.32
            else:
                family_score = 0.62
        else:
            family_score = 0.76 if good_with_children == 'Yes' else 0.70
        scores['family'] = family_score

        # 6. 經驗相容性
        experience_score = 0.7
        is_beginner = any(w in user_text for w in ['first dog', 'first time', 'beginner', 'new owner', 'never had'])

        if is_beginner:
            # 評估品種對新手的友好程度
            if 'low' in care_level or 'easy' in care_level:
                experience_score = 0.94
            elif 'moderate' in care_level:
                experience_score = 0.78
            else:
                experience_score = 0.52

            # 性格調整
            if any(w in temperament for w in ['eager to please', 'trainable', 'intelligent', 'friendly']):
                experience_score = min(0.98, experience_score + 0.08)
            if any(w in temperament for w in ['stubborn', 'independent', 'strong-willed']):
                experience_score = max(0.38, experience_score - 0.18)
        else:
            experience_score = 0.80
        scores['experience'] = experience_score

        # 7. 健康分數(基於壽命和品種特性)
        health_score = 0.75
        lifespan = breed_info.get('Lifespan', '10-12 years')
        try:
            # 解析壽命
            years = [int(y) for y in lifespan.replace(' years', '').split('-') if y.strip().isdigit()]
            if years:
                avg_lifespan = sum(years) / len(years)
                if avg_lifespan >= 14:
                    health_score = 0.94
                elif avg_lifespan >= 12:
                    health_score = 0.85
                elif avg_lifespan >= 10:
                    health_score = 0.75
                else:
                    health_score = 0.62
        except:
            pass
        scores['health'] = health_score

        return scores

    def _get_dimension_weights_from_query(self, user_text: str, dimensions) -> Dict[str, float]:
        """
        根據用戶查詢動態計算維度權重
        """
        weights = {
            'space': 1.0,
            'exercise': 1.0,
            'grooming': 1.0,
            'noise': 1.0,
            'family': 1.0,
            'experience': 1.0,
            'health': 0.8
        }

        # 根據 dimensions 的 priority 調整權重
        if hasattr(dimensions, 'dimension_priorities'):
            priority_map = getattr(dimensions, 'dimension_priorities', {})
            for dim, priority in priority_map.items():
                if dim in weights:
                    weights[dim] = priority
                # 映射不同名稱
                if dim == 'size':
                    weights['space'] = max(weights['space'], priority)
                if dim == 'family':
                    weights['family'] = max(weights['family'], priority)

        # 根據關鍵詞強化權重
        if any(w in user_text for w in ['quiet', 'noise', 'bark', 'neighbors', 'thin walls']):
            weights['noise'] = max(weights['noise'], 2.2)
        if any(w in user_text for w in ['kids', 'children', 'family', 'child']):
            weights['family'] = max(weights['family'], 2.0)
        if any(w in user_text for w in ['first', 'beginner', 'new owner']):
            weights['experience'] = max(weights['experience'], 2.0)
        if any(w in user_text for w in ['apartment', 'small space', 'studio']):
            weights['space'] = max(weights['space'], 1.8)
        if any(w in user_text for w in ['energetic', 'active', 'running', 'hiking']):
            weights['exercise'] = max(weights['exercise'], 2.0)
        if any(w in user_text for w in ['low maintenance', 'easy care']):
            weights['grooming'] = max(weights['grooming'], 1.8)

        return weights

    def _calculate_real_dimension_scores(self, breed: str, breed_info: Dict,
                                        user_input: str, overall_score: float) -> Dict[str, float]:
        """
        計算真實的維度分數(基於品種特性和用戶需求)
        這個方法取代了假分數生成器,提供真實的評分

        Args:
            breed: 品種名稱
            breed_info: 品種資訊字典
            user_input: 用戶輸入文字
            overall_score: 總體分數

        Returns:
            Dict[str, float]: 維度分數字典
        """
        if not breed_info:
            breed_info = {}

        user_text = user_input.lower()
        temperament = breed_info.get('Temperament', '').lower()
        size = breed_info.get('Size', 'Medium').lower()
        exercise_needs = breed_info.get('Exercise Needs', 'Moderate').lower()
        grooming_needs = breed_info.get('Grooming Needs', 'Moderate').lower()
        good_with_children = breed_info.get('Good with Children', 'Yes')
        care_level = breed_info.get('Care Level', 'Moderate').lower()

        scores = {}

        # 1. Space Compatibility (空間相容性)
        space_score = 0.7
        if 'apartment' in user_text or 'small' in user_text:
            if 'small' in size:
                space_score = 0.9
            elif 'medium' in size:
                space_score = 0.7
            elif 'large' in size:
                space_score = 0.5
            elif 'giant' in size:
                space_score = 0.3
        elif 'house' in user_text or 'yard' in user_text:
            if 'large' in size or 'giant' in size:
                space_score = 0.85
            else:
                space_score = 0.8
        scores['space'] = space_score

        # 2. Exercise Compatibility (運動相容性)
        exercise_score = 0.7
        if 'low' in exercise_needs or 'minimal' in exercise_needs:
            if any(term in user_text for term in ['work full time', 'busy', 'low exercise', 'not much exercise']):
                exercise_score = 0.9
            else:
                exercise_score = 0.75
        elif 'high' in exercise_needs or 'very high' in exercise_needs:
            if any(term in user_text for term in ['active', 'running', 'hiking', 'exercise']):
                exercise_score = 0.9
            elif any(term in user_text for term in ['work full time', 'busy']):
                exercise_score = 0.5
            else:
                exercise_score = 0.65
        else:  # moderate
            exercise_score = 0.75
        scores['exercise'] = exercise_score

        # 3. Grooming/Maintenance Compatibility (美容/維護相容性)
        grooming_score = 0.7
        if 'low' in grooming_needs:
            if any(term in user_text for term in ['low maintenance', 'low-maintenance', 'easy care', 'minimal grooming']):
                grooming_score = 0.9
            else:
                grooming_score = 0.8
        elif 'high' in grooming_needs:
            if any(term in user_text for term in ['low maintenance', 'low-maintenance', 'easy care']):
                grooming_score = 0.4
            else:
                grooming_score = 0.6

        # 敏感品種需要額外照顧
        if 'sensitive' in temperament:
            grooming_score -= 0.1
        # 特殊品種需要額外護理
        breed_lower = breed.lower()
        if any(term in breed_lower for term in ['italian', 'greyhound', 'whippet', 'hairless']):
            if any(term in user_text for term in ['low maintenance', 'low-maintenance', 'easy']):
                grooming_score -= 0.15
        scores['grooming'] = max(0.2, grooming_score)

        # 4. Experience Compatibility (經驗相容性) - 關鍵維度!
        experience_score = 0.7
        is_beginner = any(term in user_text for term in ['first dog', 'first time', 'beginner', 'new to dogs', 'never owned', 'never had'])

        if is_beginner:
            # 新手評估
            if 'low' in care_level:
                experience_score = 0.85
            elif 'moderate' in care_level:
                experience_score = 0.65
            elif 'high' in care_level:
                experience_score = 0.45

            # 性格懲罰 - 對新手很重要
            difficult_traits = ['sensitive', 'stubborn', 'independent', 'dominant', 'aggressive', 'nervous', 'shy', 'timid', 'alert']
            for trait in difficult_traits:
                if trait in temperament:
                    if trait == 'sensitive':
                        experience_score -= 0.15  # 敏感性格對新手很具挑戰
                    elif trait == 'aggressive':
                        experience_score -= 0.25
                    elif trait in ['stubborn', 'independent', 'dominant']:
                        experience_score -= 0.12
                    else:
                        experience_score -= 0.08

            # 友善性格獎勵
            easy_traits = ['friendly', 'gentle', 'eager to please', 'patient', 'calm', 'outgoing']
            for trait in easy_traits:
                if trait in temperament:
                    experience_score += 0.08

            # 易於訓練的加分
            if any(term in user_text for term in ['easy to train', 'trainable']):
                if any(term in temperament for term in ['eager to please', 'intelligent', 'trainable']):
                    experience_score += 0.1
                elif any(term in temperament for term in ['stubborn', 'independent']):
                    experience_score -= 0.1
        else:
            # 有經驗的飼主
            experience_score = 0.8

        scores['experience'] = max(0.2, min(0.95, experience_score))

        # 5. Noise Compatibility (噪音相容性)
        noise_score = 0.75
        if any(term in user_text for term in ['quiet', 'apartment', 'neighbors']):
            if any(term in temperament for term in ['quiet', 'calm', 'gentle']):
                noise_score = 0.9
            elif any(term in temperament for term in ['alert', 'vocal', 'barking']):
                noise_score = 0.5
        scores['noise'] = noise_score

        # 6. Family Compatibility (家庭相容性)
        family_score = 0.7
        if any(term in user_text for term in ['children', 'kids', 'family']):
            if good_with_children == 'Yes' or good_with_children == True:
                family_score = 0.9
                if any(term in temperament for term in ['gentle', 'patient', 'friendly']):
                    family_score = 0.95
            else:
                family_score = 0.35
        scores['family'] = family_score

        # 7. Overall
        scores['overall'] = overall_score

        return scores

    def get_enhanced_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
        """
        增強的多維度語義品種推薦

        Args:
            user_input: 用戶的自然語言描述
            top_k: 返回的推薦數量

        Returns:
            增強評分的推薦品種列表
        """
        try:
            # 階段 1: 查詢理解
            if self.query_engine:
                dimensions = self.query_engine.analyze_query(user_input)
                print(f"Query dimensions detected: {len(dimensions.spatial_constraints + dimensions.activity_level + dimensions.noise_preferences + dimensions.size_preferences + dimensions.family_context + dimensions.maintenance_level + dimensions.special_requirements)} total dimensions")
            else:
                print("Query engine not available, using basic analysis")
                return self.get_semantic_recommendations(user_input, top_k)

            # 階段 2: 應用約束
            if self.constraint_manager:
                filter_result = self.constraint_manager.apply_constraints(dimensions, min_candidates=max(8, top_k))
                print(f"Constraint filtering: {len(self.breed_list)} -> {len(filter_result.passed_breeds)} candidates")

                if not filter_result.passed_breeds:
                    error_msg = f"No dog breeds match your requirements after applying constraints. Applied constraints: {filter_result.applied_constraints}. Consider relaxing some requirements."
                    print(f"ERROR: {error_msg}")
                    raise ValueError(error_msg)
            else:
                print("Constraint manager not available, using all breeds")
                filter_result = type('FilterResult', (), {
                    'passed_breeds': self.breed_list,
                    'applied_constraints': [],
                    'relaxed_constraints': [],
                    'warnings': []
                })()

            # 階段 3: 多頭評分
            if self.multi_head_scorer:
                breed_scores = self.multi_head_scorer.score_breeds(filter_result.passed_breeds, dimensions)
                print(f"Multi-head scoring completed for {len(breed_scores)} breeds")
                # Debug: 顯示前5名的分數和維度breakdown
                for bs in breed_scores[:5]:
                    print(f"  {bs.breed_name}: final={bs.final_score:.3f}, breakdown={bs.dimensional_breakdown}")
            else:
                # 使用回退評分,但仍然尊重 constraint 過濾結果
                print("Multi-head scorer not available, using fallback scoring with constraint filtering")
                fallback_results = self._get_fallback_scoring_with_constraints(
                    user_input, filter_result.passed_breeds, dimensions, top_k
                )
                return fallback_results

            # 階段 4: 分數校準
            if self.score_calibrator:
                breed_score_tuples = [(score.breed_name, score.final_score) for score in breed_scores]
                calibration_result = self.score_calibrator.calibrate_scores(breed_score_tuples)
                print(f"Score calibration: method={calibration_result.calibration_method}")
            else:
                print("Score calibrator not available, using raw scores")
                calibration_result = type('CalibrationResult', (), {
                    'score_mapping': {score.breed_name: score.final_score for score in breed_scores},
                    'calibration_method': 'none'
                })()

            # 階段 5: 生成最終推薦
            final_recommendations = []

            for i, breed_score in enumerate(breed_scores[:top_k]):
                breed_name = breed_score.breed_name

                # 獲取校準後的分數
                calibrated_score = calibration_result.score_mapping.get(breed_name, breed_score.final_score)

                # 獲取標準化品種信息
                if self.config_manager:
                    standardized_info = get_standardized_breed_data(breed_name.replace(' ', '_'))
                    if standardized_info:
                        breed_info = self._get_breed_info_from_standardized(standardized_info)
                    else:
                        breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}
                else:
                    breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}

                # 將 dimensional_breakdown 轉換為 UI 需要的 scores 格式
                breakdown = breed_score.dimensional_breakdown or {}
                ui_scores = {
                    'space': breakdown.get('spatial_compatibility', 0.7),
                    'exercise': breakdown.get('activity_compatibility', 0.7),
                    'grooming': breakdown.get('maintenance_compatibility', 0.7),
                    'experience': breakdown.get('experience_compatibility', 0.7),
                    'noise': breakdown.get('noise_compatibility', 0.7),
                    'family': breakdown.get('family_compatibility', 0.7),
                    'health': breakdown.get('health_compatibility', 0.7),
                    'overall': calibrated_score
                }

                recommendation = {
                    'breed': breed_name,
                    'rank': i + 1,
                    'overall_score': calibrated_score,
                    'final_score': calibrated_score,
                    'semantic_score': breed_score.semantic_component,
                    'attribute_score': breed_score.attribute_component,
                    'bidirectional_bonus': breed_score.bidirectional_bonus,
                    'confidence_score': breed_score.confidence_score,
                    'dimensional_breakdown': breed_score.dimensional_breakdown,
                    'scores': ui_scores,  # UI 需要的格式
                    'explanation': breed_score.explanation,
                    'size': breed_info.get('Size', 'Unknown'),
                    'temperament': breed_info.get('Temperament', ''),
                    'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
                    'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
                    'good_with_children': breed_info.get('Good with Children', 'Yes'),
                    'lifespan': breed_info.get('Lifespan', '10-12 years'),
                    'description': breed_info.get('Description', ''),
                    'search_type': 'enhanced_description',
                    'calibration_method': calibration_result.calibration_method,
                    'applied_constraints': filter_result.applied_constraints,
                    'relaxed_constraints': filter_result.relaxed_constraints,
                    'warnings': filter_result.warnings
                }

                final_recommendations.append(recommendation)

            # 應用尺寸分佈修正
            corrected_recommendations = self._apply_size_distribution_correction(final_recommendations)

            # 階段 6: 應用智能特徵匹配增強
            intelligence_enhanced_recommendations = self._apply_intelligent_trait_matching(corrected_recommendations, user_input)

            print(f"Generated {len(intelligence_enhanced_recommendations)} enhanced semantic recommendations with intelligent trait matching")
            return intelligence_enhanced_recommendations

        except Exception as e:
            print(f"Error in enhanced semantic recommendations: {str(e)}")
            print(traceback.format_exc())
            # 回退到原始方法
            return self.get_semantic_recommendations(user_input, top_k)

    def get_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
        """
        基於自然語言描述獲取品種推薦

        Args:
            user_input: 用戶的自然語言描述
            top_k: 返回的推薦數量

        Returns:
            推薦品種列表
        """
        try:
            print(f"Processing user input: {user_input}")

            # 檢查模型是否可用 - 如果不可用,則報錯
            if self.sbert_model is None:
                error_msg = "SBERT model not available. This could be due to:\n• Model download failed\n• Insufficient memory\n• Network connectivity issues\n\nPlease check your environment and try again."
                print(f"ERROR: {error_msg}")
                raise RuntimeError(error_msg)

            # 生成用戶輸入嵌入
            user_embedding = self.vector_manager.encode_text(user_input)

            # 解析比較性偏好
            comparative_prefs = self._parse_comparative_preferences(user_input)

            # 提取生活方式關鍵字
            lifestyle_keywords = self._extract_lifestyle_keywords(user_input)

            # 計算與所有品種的相似度並應用約束
            similarities = []

            for breed, breed_vector in self.breed_vectors.items():
                # 首先應用硬約束
                constraint_penalty = self._apply_hard_constraints(breed, user_input, breed_vector.characteristics)

                # 跳過違反關鍵約束的品種
                if constraint_penalty <= -1.0:  # 完全取消資格
                    continue

                # 基本語義相似度
                semantic_score = cosine_similarity(
                    [user_embedding],
                    [breed_vector.embedding]
                )[0][0]

                # 比較性偏好加權
                comparative_bonus = comparative_prefs.get(breed, 0.0)

                # 生活方式匹配獎勵
                lifestyle_bonus = self._calculate_lifestyle_bonus(
                    breed_vector.characteristics,
                    lifestyle_keywords
                )

                # 應用約束懲罰
                lifestyle_bonus += constraint_penalty

                # 更好分佈的增強組合分數
                # 應用指數縮放以創建更自然的分數分佈
                base_semantic = semantic_score ** 0.8  # 輕微壓縮高分
                enhanced_lifestyle = lifestyle_bonus * 2.0  # 放大生活方式匹配
                enhanced_comparative = comparative_bonus * 1.5  # 放大品種偏好

                final_score = (
                    base_semantic * 0.55 +
                    enhanced_comparative * 0.30 +
                    enhanced_lifestyle * 0.15
                )

                # 添加小的隨機變化以自然地打破平局
                random.seed(hash(breed))  # 對相同品種保持一致
                final_score += random.uniform(-0.03, 0.03)

                # 確保最終分數不超過 1.0
                final_score = min(1.0, final_score)

                similarities.append({
                    'breed': breed,
                    'score': final_score,
                    'semantic_score': semantic_score,
                    'comparative_bonus': comparative_bonus,
                    'lifestyle_bonus': lifestyle_bonus
                })

            # 計算平衡分佈的標準化顯示分數
            breed_display_scores = []

            # 首先,收集所有語義分數以進行標準化
            all_semantic_scores = [breed_data['semantic_score'] for breed_data in similarities]
            semantic_mean = np.mean(all_semantic_scores)
            semantic_std = np.std(all_semantic_scores) if len(all_semantic_scores) > 1 else 1.0

            for breed_data in similarities:
                breed = breed_data['breed']
                base_semantic = breed_data['semantic_score']

                # 標準化語義分數以防止極端異常值
                if semantic_std > 0:
                    normalized_semantic = (base_semantic - semantic_mean) / semantic_std
                    normalized_semantic = max(-2.0, min(2.0, normalized_semantic))  # 限制在 2 個標準差
                    scaled_semantic = 0.5 + (normalized_semantic * 0.1)  # 映射到 0.3-0.7 範圍
                else:
                    scaled_semantic = 0.5

                # 獲取品種特徵
                breed_info = get_dog_description(breed) if breed != 'Unknown' else {}
                breed_size = breed_info.get('Size', '').lower() if breed_info else ''
                exercise_needs = breed_info.get('Exercise Needs', '').lower() if breed_info else ''

                # 計算特徵匹配分數(比純語義相似度更重要)
                feature_score = 0.0
                user_text = user_input.lower()

                # 尺寸和空間需求(高權重)
                if any(term in user_text for term in ['apartment', 'small', 'limited space']):
                    if 'small' in breed_size:
                        feature_score += 0.25
                    elif 'medium' in breed_size:
                        feature_score += 0.05
                    elif 'large' in breed_size or 'giant' in breed_size:
                        feature_score -= 0.30

                # 運動需求(高權重)
                if any(term in user_text for term in ['low exercise', 'minimal exercise', "doesn't need", 'not much']):
                    if 'low' in exercise_needs or 'minimal' in exercise_needs:
                        feature_score += 0.20
                    elif 'high' in exercise_needs or 'very high' in exercise_needs:
                        feature_score -= 0.25
                elif any(term in user_text for term in ['active', 'high exercise', 'running', 'hiking']):
                    if 'high' in exercise_needs:
                        feature_score += 0.20
                    elif 'low' in exercise_needs:
                        feature_score -= 0.15

                # 家庭相容性
                if any(term in user_text for term in ['children', 'kids', 'family']):
                    good_with_children = breed_info.get('Good with Children', '') if breed_info else ''
                    if good_with_children == 'Yes':
                        feature_score += 0.10
                    elif good_with_children == 'No':
                        feature_score -= 0.20

                # 平衡權重組合分數
                final_score = (
                    scaled_semantic * 0.35 +  # 降低語義權重
                    feature_score * 0.45 +    # 增加特徵匹配權重
                    breed_data['lifestyle_bonus'] * 0.15 +
                    breed_data['comparative_bonus'] * 0.05
                )

                # 計算基本相容性分數
                base_compatibility = final_score

                # 應用自然分佈的動態評分
                if base_compatibility >= 0.9:  # 例外匹配
                    score_range = (0.92, 0.98)
                    position = (base_compatibility - 0.9) / 0.1
                elif base_compatibility >= 0.75:  # 優秀匹配
                    score_range = (0.85, 0.91)
                    position = (base_compatibility - 0.75) / 0.15
                elif base_compatibility >= 0.6:  # 良好匹配
                    score_range = (0.75, 0.84)
                    position = (base_compatibility - 0.6) / 0.15
                elif base_compatibility >= 0.45:  # 公平匹配
                    score_range = (0.65, 0.74)
                    position = (base_compatibility - 0.45) / 0.15
                elif base_compatibility >= 0.3:  # 較差匹配
                    score_range = (0.55, 0.64)
                    position = (base_compatibility - 0.3) / 0.15
                else:  # 非常差的匹配
                    score_range = (0.45, 0.54)
                    position = max(0, base_compatibility / 0.3)

                # 計算帶自然變化的最終分數
                score_span = score_range[1] - score_range[0]
                base_score = score_range[0] + (position * score_span)

                # 添加控制的隨機變化以進行自然排名
                random.seed(hash(breed + user_input[:15]))
                variation = random.uniform(-0.015, 0.015)
                display_score = round(max(0.45, min(0.98, base_score + variation)), 3)

                breed_display_scores.append({
                    'breed': breed,
                    'display_score': display_score,
                    'semantic_score': base_semantic,
                    'comparative_bonus': breed_data['comparative_bonus'],
                    'lifestyle_bonus': breed_data['lifestyle_bonus']
                })

            # 計算真實維度分數並整合到排序中
            for breed_data in breed_display_scores:
                breed = breed_data['breed']
                breed_info = get_dog_description(breed)
                real_scores = self._calculate_real_dimension_scores(
                    breed, breed_info, user_input, breed_data['display_score']
                )
                breed_data['real_scores'] = real_scores

                # 計算加權的最終分數(考慮維度分數)
                # 原始顯示分數權重 50%,維度分數平均權重 50%
                dim_scores = [real_scores.get('space', 0.7), real_scores.get('exercise', 0.7),
                             real_scores.get('grooming', 0.7), real_scores.get('experience', 0.7),
                             real_scores.get('noise', 0.7)]
                avg_dim_score = sum(dim_scores) / len(dim_scores)

                # 對低維度分數施加懲罰
                min_dim_score = min(dim_scores)
                penalty = 0
                if min_dim_score < 0.5:
                    penalty = (0.5 - min_dim_score) * 0.3  # 最低分數懲罰

                # 最終排序分數
                breed_data['adjusted_score'] = (
                    breed_data['display_score'] * 0.5 +
                    avg_dim_score * 0.5 -
                    penalty
                )

            # 按調整後的分數排序
            breed_display_scores.sort(key=lambda x: x['adjusted_score'], reverse=True)
            top_breeds = breed_display_scores[:top_k]

            # 轉換為標準推薦格式
            recommendations = []
            for i, breed_data in enumerate(top_breeds):
                breed = breed_data['breed']
                adjusted_score = breed_data['adjusted_score']
                real_scores = breed_data['real_scores']

                # 獲取詳細信息
                breed_info = get_dog_description(breed)

                recommendation = {
                    'breed': breed.replace('_', ' '),
                    'rank': i + 1,
                    'overall_score': adjusted_score,  # 使用調整後的分數
                    'final_score': adjusted_score,    # 確保 final_score 與 overall_score 匹配
                    'semantic_score': breed_data['semantic_score'],
                    'comparative_bonus': breed_data['comparative_bonus'],
                    'lifestyle_bonus': breed_data['lifestyle_bonus'],
                    'size': breed_info.get('Size', 'Unknown') if breed_info else 'Unknown',
                    'temperament': breed_info.get('Temperament', '') if breed_info else '',
                    'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate',
                    'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate',
                    'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes',
                    'lifespan': breed_info.get('Lifespan', '10-12 years') if breed_info else '10-12 years',
                    'description': breed_info.get('Description', '') if breed_info else '',
                    'search_type': 'description',
                    'scores': real_scores  # 添加真實的維度分數
                }

                recommendations.append(recommendation)

            print(f"Generated {len(recommendations)} semantic recommendations")
            return recommendations

        except Exception as e:
            print(f"Failed to generate semantic recommendations: {str(e)}")
            print(traceback.format_exc())
            return []

    def get_enhanced_recommendations_with_unified_scoring(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
        """
        增強推薦方法 - 使用完整的多頭評分系統

        這個方法使用:
        - QueryUnderstandingEngine: 解析用戶意圖
        - PriorityDetector: 檢測維度優先級
        - MultiHeadScorer: 多維度評分
        - DynamicWeightCalculator: 動態權重分配
        """
        try:
            print(f"Processing enhanced recommendation with multi-head scoring: {user_input[:50]}...")

            # 使用完整的增強語義推薦系統(包含 multi_head_scorer)
            return self.get_enhanced_semantic_recommendations(user_input, top_k)

        except Exception as e:
            error_msg = f"Enhanced recommendation error: {str(e)}. Please check your description."
            print(f"ERROR: {error_msg}")
            print(traceback.format_exc())
            raise RuntimeError(error_msg) from e

    def _analyze_user_description_enhanced(self, user_description: str) -> Dict[str, Any]:
        """增強用戶描述分析"""
        return self.query_analyzer.analyze_user_description_enhanced(user_description)

    def _create_user_preferences_from_analysis_enhanced(self, analysis: Dict[str, Any]) -> UserPreferences:
        """從分析結果創建用戶偏好物件"""
        return self.query_analyzer.create_user_preferences_from_analysis_enhanced(analysis)

    def _get_candidate_breeds_enhanced(self, analysis: Dict[str, Any]) -> List[str]:
        """獲取候選品種列表"""
        return self.query_analyzer.get_candidate_breeds_enhanced(analysis)

    def _apply_constraint_filtering_enhanced(self, breed: str, analysis: Dict[str, Any]) -> float:
        """應用約束過濾,返回調整分數"""
        # 這個方法需要從 score_calculator 調用適當的方法
        # 但原始實現中沒有這個具體方法,所以我們提供基本實現
        constraint_penalty = 0.0

        breed_info = get_dog_description(breed)
        if not breed_info:
            return constraint_penalty

        # 低噪音要求
        if 'low_noise' in analysis['constraint_requirements']:
            noise_info = breed_noise_info.get(breed, {})
            noise_level = noise_info.get('noise_level', 'moderate').lower()
            if 'high' in noise_level:
                constraint_penalty -= 0.3  # 嚴重扣分
            elif 'low' in noise_level:
                constraint_penalty += 0.1  # 輕微加分

        # 公寓適合性
        if 'apartment_suitable' in analysis['constraint_requirements']:
            size = breed_info.get('Size', '').lower()
            exercise_needs = breed_info.get('Exercise Needs', '').lower()

            if size in ['large', 'giant']:
                constraint_penalty -= 0.2
            elif size in ['small', 'tiny']:
                constraint_penalty += 0.1

            if 'high' in exercise_needs:
                constraint_penalty -= 0.15

        # 兒童友善性
        if 'child_friendly' in analysis['constraint_requirements']:
            good_with_children = breed_info.get('Good with Children', 'Unknown')
            if good_with_children == 'Yes':
                constraint_penalty += 0.15
            elif good_with_children == 'No':
                constraint_penalty -= 0.4  # 嚴重扣分

        return constraint_penalty

    def _get_breed_characteristics_enhanced(self, breed: str) -> Dict[str, Any]:
        """獲取品種特徵"""
        return self.score_calculator.get_breed_characteristics_enhanced(breed)

    def get_hybrid_recommendations(self, user_description: str,
                                 user_preferences: Optional[Any] = None,
                                 top_k: int = 15) -> List[Dict[str, Any]]:
        """
        混合推薦:結合語義匹配與傳統評分

        Args:
            user_description: 用戶的自然語言描述
            user_preferences: 可選的結構化偏好設置
            top_k: 返回的推薦數量

        Returns:
            混合推薦結果
        """
        try:
            # 獲取語義推薦
            semantic_recommendations = self.get_semantic_recommendations(user_description, top_k * 2)

            if not user_preferences:
                return semantic_recommendations[:top_k]

            # 與傳統評分結合
            hybrid_results = []

            for semantic_rec in semantic_recommendations:
                breed_name = semantic_rec['breed'].replace(' ', '_')

                # 計算傳統相容性分數
                traditional_score = calculate_compatibility_score(user_preferences, breed_name)

                # 混合分數(語義 40% + 傳統 60%)
                hybrid_score = (
                    semantic_rec['overall_score'] * 0.4 +
                    traditional_score * 0.6
                )

                semantic_rec['hybrid_score'] = hybrid_score
                semantic_rec['traditional_score'] = traditional_score
                hybrid_results.append(semantic_rec)

            # 按混合分數重新排序
            hybrid_results.sort(key=lambda x: x['hybrid_score'], reverse=True)

            # 更新排名
            for i, result in enumerate(hybrid_results[:top_k]):
                result['rank'] = i + 1
                result['overall_score'] = result['hybrid_score']

            return hybrid_results[:top_k]

        except Exception as e:
            print(f"Hybrid recommendation failed: {str(e)}")
            print(traceback.format_exc())
            return self.get_semantic_recommendations(user_description, top_k)


def get_breed_recommendations_by_description(user_description: str,
                                           user_preferences: Optional[Any] = None,
                                           top_k: int = 15) -> List[Dict[str, Any]]:
    """基於描述獲取品種推薦的主要介面函數"""
    try:
        print("Initializing Enhanced SemanticBreedRecommender...")
        recommender = SemanticBreedRecommender()

        # 優先使用整合統一評分系統的增強推薦
        print("Using enhanced recommendation system with unified scoring")
        results = recommender.get_enhanced_recommendations_with_unified_scoring(user_description, top_k)

        if results and len(results) > 0:
            print(f"Generated {len(results)} enhanced recommendations successfully")
            return results
        else:
            # 如果增強系統無結果,嘗試原有增強系統
            print("Enhanced unified system returned no results, trying original enhanced system")
            results = recommender.get_enhanced_semantic_recommendations(user_description, top_k)

            if results and len(results) > 0:
                return results
            else:
                # 最後回退到標準系統
                print("All enhanced systems failed, using standard system")
                if user_preferences:
                    results = recommender.get_hybrid_recommendations(user_description, user_preferences, top_k)
                else:
                    results = recommender.get_semantic_recommendations(user_description, top_k)

                if not results:
                    error_msg = f"All recommendation systems failed to generate results. Please check your input description and try again. Error details may be in the console."
                    print(f"ERROR: {error_msg}")
                    raise RuntimeError(error_msg)
                return results

    except Exception as e:
        error_msg = f"Critical error in recommendation system: {str(e)}. Please check your input and system configuration."
        print(f"ERROR: {error_msg}")
        print(traceback.format_exc())
        raise RuntimeError(error_msg) from e


def get_enhanced_recommendations_with_unified_scoring(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]:
    """
    模組層級便利函數 - 使用完整的多頭評分系統

    這個函數呼叫 SemanticBreedRecommender 的增強推薦方法,使用:
    - QueryUnderstandingEngine: 解析用戶意圖
    - PriorityDetector: 檢測維度優先級
    - MultiHeadScorer: 多維度評分
    - DynamicWeightCalculator: 動態權重分配
    - SmartBreedFilter: 智慧風險過濾(只對真正危害用戶的情況干預)

    如果增強系統失敗,會自動回退到基本語義推薦
    """
    try:
        print(f"Processing description-based recommendation with multi-head scoring: {user_description[:50]}...")

        # 創建推薦器實例
        recommender = SemanticBreedRecommender()

        # 檢查 SBERT 模型是否可用
        if not recommender.vector_manager.is_model_available():
            print("SBERT model not available, using basic text matching...")
            results = _get_basic_text_matching_recommendations(user_description, top_k, recommender)
            # 應用智慧過濾
            results = apply_smart_filtering(results, user_description)
            return results

        # 嘗試使用完整的增強語義推薦系統
        try:
            results = recommender.get_enhanced_semantic_recommendations(user_description, top_k)
            if results:
                # 應用智慧過濾
                results = apply_smart_filtering(results, user_description)
                return results
            else:
                print("Enhanced recommendations returned empty, falling back to basic semantic...")
        except Exception as enhanced_error:
            print(f"Enhanced recommendation failed: {str(enhanced_error)}, falling back to basic semantic...")
            print(traceback.format_exc())

        # 回退到基本語義推薦
        try:
            results = recommender.get_semantic_recommendations(user_description, top_k)
            if results:
                # 應用智慧過濾
                results = apply_smart_filtering(results, user_description)
                return results
        except Exception as semantic_error:
            print(f"Basic semantic recommendation also failed: {str(semantic_error)}")

        # 最後回退到基本文字匹配
        print("All semantic methods failed, using basic text matching as last resort...")
        results = _get_basic_text_matching_recommendations(user_description, top_k, recommender)
        # 應用智慧過濾
        results = apply_smart_filtering(results, user_description)
        return results

    except Exception as e:
        error_msg = f"Error in semantic recommendation system: {str(e)}. Please check your input and try again."
        print(f"ERROR: {error_msg}")
        print(traceback.format_exc())
        raise RuntimeError(error_msg) from e

def _get_basic_text_matching_recommendations(user_description: str, top_k: int = 15, recommender=None) -> List[Dict[str, Any]]:
    """基本文字匹配推薦(SBERT 不可用時的後備方案)"""
    try:
        print("Using basic text matching as fallback...")

        # 如果沒有提供 recommender,創建一個新的
        if recommender is None:
            recommender = SemanticBreedRecommender()

        # 基本關鍵字匹配
        keywords = user_description.lower().split()
        breed_scores = []

        # 從數據庫獲取品種清單或使用預設清單
        try:
            conn = sqlite3.connect('animal_detector.db')
            cursor = conn.cursor()
            cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog LIMIT 50")
            basic_breeds = [row[0] for row in cursor.fetchall()]
            cursor.close()
            conn.close()
            # 過濾掉野生動物品種
            basic_breeds = [breed for breed in basic_breeds if breed != 'Dhole']
        except Exception as e:
            print(f"Could not load breed list from database: {str(e)}")
            # 後備品種清單
            basic_breeds = [
                'Labrador_Retriever', 'Golden_Retriever', 'German_Shepherd', 'French_Bulldog',
                'Border_Collie', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier',
                'Dachshund', 'Boxer', 'Siberian_Husky', 'Great_Dane', 'Pomeranian', 'Shih_Tzu',
                'Maltese_Dog', 'Chihuahua', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
                'Japanese_Spaniel', 'Toy_Terrier', 'Affenpinscher', 'Pekingese', 'Lhasa'
            ]

        # 應用約束過濾 - 關鍵修復!
        try:
            from constraint_manager import ConstraintManager
            from query_understanding import QueryUnderstandingEngine

            query_engine = QueryUnderstandingEngine()
            dimensions = query_engine.analyze_query(user_description)
            constraint_manager = ConstraintManager()
            filter_result = constraint_manager.apply_constraints(dimensions)

            # 只保留通過約束的品種
            allowed_breeds = filter_result.passed_breeds
            filtered_count = len(basic_breeds)
            basic_breeds = [b for b in basic_breeds if b in allowed_breeds]
            print(f"Constraint filtering: {filtered_count} -> {len(basic_breeds)} breeds")

            # 記錄被過濾的原因(用於調試)
            for breed, reason in filter_result.filtered_breeds.items():
                if breed in ['Italian_Greyhound', 'Rottweiler', 'Malinois']:
                    print(f"  Filtered {breed}: {reason}")
        except Exception as e:
            print(f"Warning: Could not apply constraints: {str(e)}")

        for breed in basic_breeds:
            breed_info = get_dog_description(breed) or {}
            breed_text = f"{breed} {breed_info.get('Temperament', '')} {breed_info.get('Size', '')} {breed_info.get('Description', '')}".lower()

            # 計算關鍵字匹配分數
            matches = sum(1 for keyword in keywords if keyword in breed_text)
            base_score = min(0.95, 0.3 + (matches / len(keywords)) * 0.6)

            # 應用增強匹配邏輯
            enhanced_score = recommender.score_calculator.calculate_enhanced_matching_score(
                breed, breed_info, user_description, base_score
            )

            breed_scores.append((breed, enhanced_score['final_score'], breed_info, enhanced_score))

        # 按分數排序
        breed_scores.sort(key=lambda x: x[1], reverse=True)

        recommendations = []
        for i, (breed, final_score, breed_info, enhanced_score) in enumerate(breed_scores[:top_k]):
            recommendation = {
                'breed': breed.replace('_', ' '),
                'rank': i + 1,
                'overall_score': final_score,
                'final_score': final_score,
                'semantic_score': enhanced_score.get('weighted_score', final_score),
                'comparative_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
                'lifestyle_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
                'size': breed_info.get('Size', 'Unknown'),
                'temperament': breed_info.get('Temperament', 'Unknown'),
                'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
                'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
                'good_with_children': breed_info.get('Good with Children', 'Unknown'),
                'lifespan': breed_info.get('Lifespan', '10-12 years'),
                'description': breed_info.get('Description', 'No description available'),
                'search_type': 'description',
                'scores': enhanced_score.get('dimension_scores', {
                    'space': final_score * 0.9,
                    'exercise': final_score * 0.85,
                    'grooming': final_score * 0.8,
                    'experience': final_score * 0.75,
                    'noise': final_score * 0.7,
                    'family': final_score * 0.65
                })
            }
            recommendations.append(recommendation)

        return recommendations

    except Exception as e:
        error_msg = f"Error in basic text matching: {str(e)}"
        print(f"ERROR: {error_msg}")
        raise RuntimeError(error_msg) from e