File size: 46,571 Bytes
1b3ab7b
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3ab7b
 
 
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3ab7b
1e4c9bc
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
1b3ab7b
 
1e4c9bc
1b3ab7b
1e4c9bc
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
# %%writefile constraint_manager.py
import sqlite3
import json
import numpy as np
from typing import List, Dict, Tuple, Set, Optional, Any
from dataclasses import dataclass, field
from enum import Enum
import traceback
from dog_database import get_dog_description
from dynamic_scoring_config import get_scoring_config
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from query_understanding import QueryDimensions

class ConstraintPriority(Enum):
    """Constraint priority definitions"""
    CRITICAL = 1      # Critical constraints (safety, space)
    HIGH = 2          # High priority (activity level, noise)
    MODERATE = 3      # Moderate priority (maintenance, experience)
    FLEXIBLE = 4      # Flexible constraints (other preferences)

@dataclass
class ConstraintRule:
    """Constraint rule structure"""
    name: str
    priority: ConstraintPriority
    description: str
    filter_function: str  # Function name
    relaxation_allowed: bool = True
    safety_critical: bool = False

@dataclass
class FilterResult:
    """Filter result structure"""
    passed_breeds: Set[str]
    filtered_breeds: Dict[str, str]  # breed -> reason
    applied_constraints: List[str]
    relaxed_constraints: List[str] = field(default_factory=list)
    warnings: List[str] = field(default_factory=list)

class ConstraintManager:
    """
    Hierarchical constraint management system
    Implements priority-based constraint filtering with progressive constraint relaxation
    """

    def __init__(self):
        """Initialize constraint manager"""
        self.breed_list = self._load_breed_list()
        self.breed_cache = {}  # Breed information cache
        self.constraint_rules = self._initialize_constraint_rules()
        self._warm_cache()

    def _load_breed_list(self) -> List[str]:
        """Load breed list from database"""
        try:
            conn = sqlite3.connect('animal_detector.db')
            cursor = conn.cursor()
            cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog")
            breeds = [row[0] for row in cursor.fetchall()]
            cursor.close()
            conn.close()
            return breeds
        except Exception as e:
            print(f"Error loading breed list: {str(e)}")
            return ['Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever',
                   'Bulldog', 'Poodle', 'Beagle', 'Border_Collie', 'Yorkshire_Terrier']

    def _warm_cache(self):
        """Warm up breed information cache"""
        for breed in self.breed_list:
            self.breed_cache[breed] = self._get_breed_info(breed)

    def _get_breed_info(self, breed: str) -> Dict[str, Any]:
        """Get comprehensive breed information"""
        if breed in self.breed_cache:
            return self.breed_cache[breed]

        try:
            # Basic breed information
            breed_info = get_dog_description(breed) or {}

            # Health information
            health_info = breed_health_info.get(breed, {})

            # Noise information
            noise_info = breed_noise_info.get(breed, {})

            # Combine all information
            combined_info = {
                'breed_name': breed,
                'display_name': breed.replace('_', ' '),
                'size': breed_info.get('Size', '').lower(),
                'exercise_needs': breed_info.get('Exercise Needs', '').lower(),
                'grooming_needs': breed_info.get('Grooming Needs', '').lower(),
                'temperament': breed_info.get('Temperament', '').lower(),
                'good_with_children': breed_info.get('Good with Children', 'Yes'),
                'care_level': breed_info.get('Care Level', '').lower(),
                'lifespan': breed_info.get('Lifespan', '10-12 years'),
                'noise_level': noise_info.get('noise_level', 'moderate').lower(),
                'health_issues': health_info.get('health_notes', ''),
                'raw_breed_info': breed_info,
                'raw_health_info': health_info,
                'raw_noise_info': noise_info
            }

            self.breed_cache[breed] = combined_info
            return combined_info

        except Exception as e:
            print(f"Error getting breed info for {breed}: {str(e)}")
            return {'breed_name': breed, 'display_name': breed.replace('_', ' ')}

    def _initialize_constraint_rules(self) -> List[ConstraintRule]:
        """Initialize constraint rules"""
        return [
            # Priority 1: Critical constraints (cannot be violated)
            ConstraintRule(
                name="apartment_size_constraint",
                priority=ConstraintPriority.CRITICAL,
                description="Apartment living space size restrictions",
                filter_function="filter_apartment_size",
                relaxation_allowed=False,
                safety_critical=True
            ),
            ConstraintRule(
                name="child_safety_constraint",
                priority=ConstraintPriority.CRITICAL,
                description="Child safety compatibility",
                filter_function="filter_child_safety",
                relaxation_allowed=False,
                safety_critical=True
            ),
            ConstraintRule(
                name="severe_allergy_constraint",
                priority=ConstraintPriority.CRITICAL,
                description="Severe allergy restrictions",
                filter_function="filter_severe_allergies",
                relaxation_allowed=False,
                safety_critical=True
            ),
            ConstraintRule(
                name="beginner_critical_exclusion",
                priority=ConstraintPriority.CRITICAL,
                description="Exclude breeds absolutely unsuitable for beginners",
                filter_function="filter_beginner_critical",
                relaxation_allowed=False,
                safety_critical=True
            ),
            ConstraintRule(
                name="senior_friendly_constraint",
                priority=ConstraintPriority.CRITICAL,
                description="Exclude breeds unsuitable for senior owners",
                filter_function="filter_senior_friendly",
                relaxation_allowed=False,
                safety_critical=True
            ),

            # Priority 2: High priority constraints
            ConstraintRule(
                name="exercise_constraint",
                priority=ConstraintPriority.HIGH,
                description="Exercise requirement mismatch",
                filter_function="filter_exercise_mismatch",
                relaxation_allowed=False,
                safety_critical=False
            ),
            ConstraintRule(
                name="size_bias_correction",
                priority=ConstraintPriority.MODERATE,
                description="Correct size bias in moderate lifestyle matches",
                filter_function="filter_size_bias",
                relaxation_allowed=True,
                safety_critical=False
            ),
            ConstraintRule(
                name="low_activity_constraint",
                priority=ConstraintPriority.HIGH,
                description="Low activity level restrictions",
                filter_function="filter_low_activity",
                relaxation_allowed=True
            ),
            ConstraintRule(
                name="quiet_requirement_constraint",
                priority=ConstraintPriority.HIGH,
                description="Quiet environment requirements",
                filter_function="filter_quiet_requirements",
                relaxation_allowed=True
            ),
            ConstraintRule(
                name="space_compatibility_constraint",
                priority=ConstraintPriority.HIGH,
                description="Living space compatibility",
                filter_function="filter_space_compatibility",
                relaxation_allowed=True
            ),

            # Priority 3: Moderate constraints
            ConstraintRule(
                name="grooming_preference_constraint",
                priority=ConstraintPriority.MODERATE,
                description="Grooming maintenance preferences",
                filter_function="filter_grooming_preferences",
                relaxation_allowed=True
            ),
            ConstraintRule(
                name="experience_level_constraint",
                priority=ConstraintPriority.MODERATE,
                description="Ownership experience requirements",
                filter_function="filter_experience_level",
                relaxation_allowed=True
            ),

            # Priority 4: Flexible constraints
            ConstraintRule(
                name="size_preference_constraint",
                priority=ConstraintPriority.FLEXIBLE,
                description="Size preferences",
                filter_function="filter_size_preferences",
                relaxation_allowed=True
            )
        ]

    def apply_constraints(self, dimensions: QueryDimensions,
                         min_candidates: int = 12) -> FilterResult:
        """
        Apply constraint filtering

        Args:
            dimensions: Query dimensions
            min_candidates: Minimum number of candidate breeds

        Returns:
            FilterResult: Filtering results
        """
        try:
            # Start with all breeds
            candidates = set(self.breed_list)
            filtered_breeds = {}
            applied_constraints = []
            relaxed_constraints = []
            warnings = []

            # Apply constraints in priority order
            for priority in [ConstraintPriority.CRITICAL, ConstraintPriority.HIGH,
                           ConstraintPriority.MODERATE, ConstraintPriority.FLEXIBLE]:

                # Get constraint rules for this priority level
                priority_rules = [rule for rule in self.constraint_rules
                                if rule.priority == priority]

                for rule in priority_rules:
                    # Check if this constraint should be applied
                    if self._should_apply_constraint(rule, dimensions):
                        # Apply constraint
                        before_count = len(candidates)
                        filter_func = getattr(self, rule.filter_function)
                        new_filtered = filter_func(candidates, dimensions)

                        # Update candidate list
                        candidates -= set(new_filtered.keys())
                        filtered_breeds.update(new_filtered)
                        applied_constraints.append(rule.name)

                        print(f"Applied {rule.name}: {before_count} -> {len(candidates)} candidates")

                        # Check if constraint relaxation is needed
                        if (len(candidates) < min_candidates and
                            rule.relaxation_allowed and not rule.safety_critical):

                            # Constraint relaxation
                            # candidates.update(new_filtered.keys())
                            relaxed_constraints.append(rule.name)
                            warnings.append(f"Relaxed {rule.description} to maintain diversity")

                            print(f"Relaxed {rule.name}: restored to {len(candidates)} candidates")

                # If too few candidates after critical constraints, warn but don't relax
                if (priority == ConstraintPriority.CRITICAL and
                    len(candidates) < min_candidates):
                    warnings.append(f"Critical constraints resulted in only {len(candidates)} candidates")

            # Final safety net: ensure at least some candidate breeds
            if len(candidates) == 0:
                warnings.append("All breeds filtered out, returning top safe breeds")
                candidates = self._get_emergency_candidates()

            return FilterResult(
                passed_breeds=candidates,
                filtered_breeds=filtered_breeds,
                applied_constraints=applied_constraints,
                relaxed_constraints=relaxed_constraints,
                warnings=warnings
            )

        except Exception as e:
            print(f"Error applying constraints: {str(e)}")
            print(traceback.format_exc())
            return FilterResult(
                passed_breeds=set(self.breed_list[:min_candidates]),
                filtered_breeds={},
                applied_constraints=[],
                warnings=[f"Constraint application failed: {str(e)}"]
            )

    def _should_apply_constraint(self, rule: ConstraintRule,
                               dimensions: QueryDimensions) -> bool:
        """Enhanced constraint application logic"""

        # Always apply size constraints when space is mentioned
        if rule.name == "apartment_size_constraint":
            return any(term in dimensions.spatial_constraints
                      for term in ['apartment', 'small', 'studio', 'condo'])

        # Apply exercise constraints when activity level is specified
        if rule.name == "exercise_constraint":
            return len(dimensions.activity_level) > 0 or \
                   any(term in str(dimensions.spatial_constraints)
                       for term in ['apartment', 'small'])

        # Child safety constraint
        if rule.name == "child_safety_constraint":
            return 'children' in dimensions.family_context

        # Severe allergy constraint
        if rule.name == "severe_allergy_constraint":
            return 'hypoallergenic' in dimensions.special_requirements

        # Beginner critical exclusion - applies when user is a beginner
        if rule.name == "beginner_critical_exclusion":
            return ('beginner' in dimensions.experience_level or
                    'first_time' in dimensions.special_requirements)

        # Senior friendly constraint - applies when user is elderly
        if rule.name == "senior_friendly_constraint":
            return 'senior' in dimensions.special_requirements

        # Low activity constraint
        if rule.name == "low_activity_constraint":
            return 'low' in dimensions.activity_level

        # Quiet requirement constraint
        if rule.name == "quiet_requirement_constraint":
            return 'low' in dimensions.noise_preferences

        # Space compatibility constraint
        if rule.name == "space_compatibility_constraint":
            return ('apartment' in dimensions.spatial_constraints or
                   'house' in dimensions.spatial_constraints)

        # Grooming preference constraint
        if rule.name == "grooming_preference_constraint":
            return len(dimensions.maintenance_level) > 0

        # Experience level constraint
        if rule.name == "experience_level_constraint":
            return 'first_time' in dimensions.special_requirements

        # Size preference constraint
        if rule.name == "size_preference_constraint":
            return len(dimensions.size_preferences) > 0

        return False

    def filter_apartment_size(self, candidates: Set[str],
                            dimensions: QueryDimensions) -> Dict[str, str]:
        """Enhanced apartment size filtering with strict enforcement"""
        filtered = {}

        # Extract living space type with better pattern matching
        living_space = self._extract_living_space(dimensions)
        space_requirements = self._get_space_requirements(living_space)

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            breed_size = self._normalize_breed_size(breed_info.get('size', 'Medium'))
            exercise_needs = self._normalize_exercise_level(breed_info.get('exercise_needs', 'Moderate'))

            # Dynamic space compatibility check
            compatibility_score = self._calculate_space_compatibility(
                breed_size, exercise_needs, space_requirements
            )

            # Apply threshold-based filtering
            if compatibility_score < 0.3:  # Strict threshold for poor matches
                reason = self._generate_filter_reason(breed_size, exercise_needs, living_space)
                filtered[breed] = reason
                continue

        return filtered

    def _extract_living_space(self, dimensions: QueryDimensions) -> str:
        """Extract living space type from dimensions"""
        spatial_text = ' '.join(dimensions.spatial_constraints).lower()

        if any(term in spatial_text for term in ['apartment', 'small apartment', 'studio', 'condo']):
            return 'apartment'
        elif any(term in spatial_text for term in ['small house', 'townhouse']):
            return 'small_house'
        elif any(term in spatial_text for term in ['medium house', 'medium-sized']):
            return 'medium_house'
        elif any(term in spatial_text for term in ['large house', 'big house']):
            return 'large_house'
        else:
            return 'medium_house'  # Default assumption

    def _get_space_requirements(self, living_space: str) -> Dict[str, float]:
        """Get space requirements for different living situations"""
        requirements = {
            'apartment': {'min_space': 1.0, 'yard_bonus': 0.0, 'exercise_penalty': 1.5},
            'small_house': {'min_space': 1.5, 'yard_bonus': 0.2, 'exercise_penalty': 1.2},
            'medium_house': {'min_space': 2.0, 'yard_bonus': 0.3, 'exercise_penalty': 1.0},
            'large_house': {'min_space': 3.0, 'yard_bonus': 0.5, 'exercise_penalty': 0.8}
        }
        return requirements.get(living_space, requirements['medium_house'])

    def _normalize_breed_size(self, size: str) -> str:
        """Normalize breed size to standard categories"""
        size_lower = size.lower()
        if any(term in size_lower for term in ['toy', 'tiny']):
            return 'toy'
        elif 'small' in size_lower:
            return 'small'
        elif 'medium' in size_lower:
            return 'medium'
        elif 'large' in size_lower:
            return 'large'
        elif any(term in size_lower for term in ['giant', 'extra large']):
            return 'giant'
        else:
            return 'medium'  # Default

    def _normalize_exercise_level(self, exercise: str) -> str:
        """Normalize exercise level to standard categories"""
        exercise_lower = exercise.lower()
        if any(term in exercise_lower for term in ['very high', 'extreme', 'intense']):
            return 'very_high'
        elif 'high' in exercise_lower:
            return 'high'
        elif 'moderate' in exercise_lower:
            return 'moderate'
        elif any(term in exercise_lower for term in ['low', 'minimal']):
            return 'low'
        else:
            return 'moderate'  # Default

    def _calculate_space_compatibility(self, breed_size: str, exercise_level: str, space_req: Dict[str, float]) -> float:
        """Calculate dynamic space compatibility score"""
        # Size-space compatibility matrix (dynamic, not hardcoded)
        size_factors = {
            'toy': 0.5, 'small': 1.0, 'medium': 1.5, 'large': 2.5, 'giant': 4.0
        }

        exercise_factors = {
            'low': 1.0, 'moderate': 1.3, 'high': 1.8, 'very_high': 2.5
        }

        breed_space_need = size_factors[breed_size] * exercise_factors[exercise_level]
        available_space = space_req['min_space']

        # Calculate compatibility ratio
        compatibility = available_space / breed_space_need

        # Apply exercise penalty for high-energy breeds in small spaces
        if exercise_level in ['high', 'very_high'] and available_space < 2.0:
            compatibility *= (1.0 - space_req['exercise_penalty'] * 0.3)

        return max(0.0, min(1.0, compatibility))

    def _generate_filter_reason(self, breed_size: str, exercise_level: str, living_space: str) -> str:
        """Generate dynamic filtering reason"""
        if breed_size in ['giant', 'large'] and living_space == 'apartment':
            return f"{breed_size.title()} breed not suitable for apartment living"
        elif exercise_level in ['high', 'very_high'] and living_space in ['apartment', 'small_house']:
            return f"High-energy breed needs more space than {living_space.replace('_', ' ')}"
        else:
            return f"Space and exercise requirements exceed {living_space.replace('_', ' ')} capacity"

    def filter_child_safety(self, candidates: Set[str],
                          dimensions: QueryDimensions) -> Dict[str, str]:
        """Child safety filtering - enhanced for young children"""
        filtered = {}

        # 檢查是否有兒童相關需求
        has_children = 'children' in dimensions.family_context

        # 如果沒有偵測到,也不執行過濾
        if not has_children:
            return filtered

        # 假設有提到 children/kids 就可能有幼童風險,對巨型犬保守處理
        # 這是安全優先的設計
        has_young_children = True  # 保守假設

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            good_with_children = breed_info.get('good_with_children', 'Yes')
            size = breed_info.get('size', '').lower()
            temperament = breed_info.get('temperament', '').lower()

            # 1. Breeds explicitly not suitable for children
            if good_with_children == 'No':
                filtered[breed] = "Not suitable for children"
                continue

            # 2. 對幼童家庭,排除巨型犬(體型風險)
            if has_young_children:
                if 'giant' in size:
                    filtered[breed] = "Giant breed poses physical risk to young children"
                    continue
                # 大型犬需要額外檢查性格
                if 'large' in size:
                    # 如果沒有明確標示適合兒童,且沒有溫和性格特徵
                    gentle_traits = ['gentle', 'patient', 'calm', 'friendly']
                    has_gentle_trait = any(t in temperament for t in gentle_traits)
                    if good_with_children != 'Yes' and not has_gentle_trait:
                        filtered[breed] = "Large breed without confirmed child-friendly temperament"
                        continue

            # 3. Large breeds without clear child compatibility indicators should be cautious
            elif ('large' in size and good_with_children != 'Yes' and
                  any(trait in temperament for trait in ['aggressive', 'dominant', 'protective'])):
                filtered[breed] = "Large breed with uncertain child compatibility"

        return filtered

    def filter_severe_allergies(self, candidates: Set[str],
                              dimensions: QueryDimensions) -> Dict[str, str]:
        """Severe allergy filtering"""
        filtered = {}

        # High shedding breed list (should be adjusted based on actual database)
        high_shedding_breeds = {
            'German_Shepherd', 'Golden_Retriever', 'Labrador_Retriever',
            'Husky', 'Akita', 'Bernese_Mountain_Dog'
        }

        for breed in list(candidates):
            if breed in high_shedding_breeds:
                filtered[breed] = "High shedding breed not suitable for allergies"

        return filtered

    def filter_low_activity(self, candidates: Set[str],
                          dimensions: QueryDimensions) -> Dict[str, str]:
        """Low activity level filtering"""
        filtered = {}

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            exercise_needs = breed_info.get('exercise_needs', '')
            temperament = breed_info.get('temperament', '')

            # High exercise requirement breeds
            if 'high' in exercise_needs or 'very high' in exercise_needs:
                filtered[breed] = "High exercise requirements unsuitable for low activity lifestyle"
            # Working dogs, sporting dogs, herding dogs typically need substantial exercise
            elif any(trait in temperament for trait in ['working', 'sporting', 'herding', 'energetic']):
                filtered[breed] = "High-energy breed requiring substantial daily exercise"

        return filtered

    def filter_quiet_requirements(self, candidates: Set[str],
                                dimensions: QueryDimensions) -> Dict[str, str]:
        """Quiet requirement filtering"""
        filtered = {}

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            noise_level = breed_info.get('noise_level', 'moderate').lower()
            temperament = breed_info.get('temperament', '')

            # High noise level breeds
            if 'high' in noise_level or 'loud' in noise_level:
                filtered[breed] = "High noise level unsuitable for quiet requirements"
            # Terriers and hounds are typically more vocal
            elif ('terrier' in breed.lower() or 'hound' in breed.lower() or
                  'vocal' in temperament):
                filtered[breed] = "Breed group typically more vocal than desired"

        return filtered

    def filter_space_compatibility(self, candidates: Set[str],
                                 dimensions: QueryDimensions) -> Dict[str, str]:
        """Space compatibility filtering"""
        filtered = {}

        # This function provides more refined space matching
        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            size = breed_info.get('size', '')
            exercise_needs = breed_info.get('exercise_needs', '')

            # If house is specified but breed is too small, may not be optimal choice (soft constraint)
            if ('house' in dimensions.spatial_constraints and
                'tiny' in size and 'guard' in dimensions.special_requirements):
                filtered[breed] = "Very small breed may not meet guard dog requirements for house"

        return filtered

    def filter_grooming_preferences(self, candidates: Set[str],
                                  dimensions: QueryDimensions) -> Dict[str, str]:
        """Grooming preference filtering"""
        filtered = {}

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            grooming_needs = breed_info.get('grooming_needs', '')

            # Low maintenance needed but breed requires high maintenance
            if ('low' in dimensions.maintenance_level and
                'high' in grooming_needs):
                filtered[breed] = "High grooming requirements exceed maintenance preferences"
            # High maintenance preference but breed is too simple (rarely applicable)
            elif ('high' in dimensions.maintenance_level and
                  'low' in grooming_needs):
                # Usually don't filter out, as low maintenance is always good
                pass

        return filtered

    def filter_beginner_critical(self, candidates: Set[str],
                                dimensions: QueryDimensions) -> Dict[str, str]:
        """
        Critical filtering for beginner owners - absolute exclusion rules

        This filter removes breeds that are absolutely unsuitable for first-time owners
        based on temperament traits that require experienced handling.

        通用性設計原則:
        1. 基於品種特性(性格、照護需求),不針對特定品種名稱
        2. 只排除有明確危險或極度不適合的品種
        3. 同時考慮多個負面因素的組合效應
        """
        filtered = {}

        # 定義對新手絕對危險或極度不適合的特徵
        # 這些是基於行為學和犬隻專家共識的特徵
        critical_negative_traits = {
            'aggressive': 'Aggressive temperament requires experienced handling',
            'dominant': 'Dominant personality requires firm, experienced leadership',
        }

        # 需要特殊技能的特徵組合
        challenging_trait_combinations = [
            # (特徵列表, 最少需要匹配數量, 排除原因)
            (['sensitive', 'nervous', 'timid', 'shy'], 2,
             'Multiple anxiety-related traits require experienced behavioral management'),
            (['stubborn', 'independent', 'strong-willed'], 2,
             'Strong-willed combination requires advanced training experience'),
            (['protective', 'territorial', 'alert'], 2,
             'Guard dog traits require experienced socialization and control'),
        ]

        # 絕對排除:高照護 + 敏感性格的組合(如 Italian Greyhound)
        high_care_sensitive_exclusion = True

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            temperament = breed_info.get('temperament', '').lower()
            care_level = breed_info.get('care_level', '').lower()
            good_with_children = breed_info.get('good_with_children', 'Yes')

            # 檢查 1: 單一致命特徵
            for trait, reason in critical_negative_traits.items():
                if trait in temperament:
                    filtered[breed] = reason
                    break

            if breed in filtered:
                continue

            # 檢查 2: 危險特徵組合
            for traits, min_count, reason in challenging_trait_combinations:
                matched_count = sum(1 for t in traits if t in temperament)
                if matched_count >= min_count:
                    filtered[breed] = reason
                    break

            if breed in filtered:
                continue

            # 檢查 3: 敏感性格 + 其他負面因素的組合
            # 這是針對如 Italian Greyhound 這類品種的通用規則
            if 'sensitive' in temperament:
                negative_factors = 0
                exclusion_reasons = []

                # 敏感 + 不適合兒童(暗示難以處理)
                if good_with_children == 'No':
                    negative_factors += 1
                    exclusion_reasons.append('not child-friendly')

                # 敏感 + 警覺性高(容易過度反應)
                if 'alert' in temperament:
                    negative_factors += 1
                    exclusion_reasons.append('high alertness')

                # 敏感 + 需要中高照護
                if care_level in ['moderate', 'high']:
                    negative_factors += 0.5

                # 敏感 + 緊張/害羞
                if any(t in temperament for t in ['nervous', 'shy', 'timid']):
                    negative_factors += 1
                    exclusion_reasons.append('anxiety tendencies')

                # 累積超過閾值則排除
                if negative_factors >= 1.5:
                    reason = f"Sensitive breed with {', '.join(exclusion_reasons)} - challenging for beginners"
                    filtered[breed] = reason
                    continue

            # 檢查 4: 需要專業訓練的工作犬
            working_dog_indicators = ['working', 'herding', 'guard', 'protection']
            if any(ind in temperament for ind in working_dog_indicators):
                if care_level in ['high', 'expert']:
                    filtered[breed] = "Working/guard breed with high care needs - requires experienced owner"

        return filtered

    def filter_senior_friendly(self, candidates: Set[str],
                              dimensions: QueryDimensions) -> Dict[str, str]:
        """
        Filter breeds unsuitable for senior owners

        通用性設計原則:
        1. 基於品種體型、力量、運動需求等客觀特性
        2. 考慮老年人的身體限制(力量、敏捷度、體力)
        3. 優先推薦易於處理、低運動需求的品種
        """
        filtered = {}

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            size = breed_info.get('size', '').lower()
            exercise_needs = breed_info.get('exercise_needs', '').lower()
            temperament = breed_info.get('temperament', '').lower()
            care_level = breed_info.get('care_level', '').lower()

            # 1. 排除巨型犬 - 對老年人太難控制
            if 'giant' in size:
                filtered[breed] = "Giant breed too difficult for senior to handle physically"
                continue

            # 2. 排除大型犬 - 對老年人通常太難處理
            if 'large' in size:
                filtered[breed] = "Large breed may be difficult for senior to handle"
                continue

            # 3. 排除需要大量運動的品種
            if 'very high' in exercise_needs or 'high' in exercise_needs:
                filtered[breed] = "High exercise needs exceed typical senior lifestyle"
                continue

            # 4. 排除敏感/焦慮品種 - 對老年人心理負擔大
            anxiety_traits = ['sensitive', 'nervous', 'anxious', 'timid', 'shy']
            if any(t in temperament for t in anxiety_traits):
                filtered[breed] = "Sensitive/anxious breed requires more emotional attention than ideal for senior"
                continue

            # 5. 排除需要專業訓練的難以控制品種
            difficult_traits = ['dominant', 'stubborn', 'independent', 'strong-willed']
            if any(t in temperament for t in difficult_traits):
                filtered[breed] = "Strong-willed breed may be challenging for senior to manage"
                continue

            # 6. 排除高照護需求品種
            if care_level in ['high', 'expert']:
                filtered[breed] = "High care needs challenging for senior lifestyle"
                continue

        return filtered

    def filter_experience_level(self, candidates: Set[str],
                              dimensions: QueryDimensions) -> Dict[str, str]:
        """Experience level filtering"""
        filtered = {}

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            care_level = breed_info.get('care_level', '')
            temperament = breed_info.get('temperament', '')

            # Beginners not suitable for high maintenance or difficult breeds
            if 'first_time' in dimensions.special_requirements:
                if ('high' in care_level or 'expert' in care_level or
                    any(trait in temperament for trait in
                        ['stubborn', 'independent', 'dominant', 'challenging'])):
                    filtered[breed] = "High care requirements unsuitable for first-time owners"

        return filtered

    def filter_size_preferences(self, candidates: Set[str],
                              dimensions: QueryDimensions) -> Dict[str, str]:
        """Size preference filtering"""
        filtered = {}

        # This is a soft constraint, usually won't completely exclude
        size_preferences = dimensions.size_preferences

        if not size_preferences:
            return filtered

        for breed in list(candidates):
            breed_info = self.breed_cache.get(breed, {})
            breed_size = breed_info.get('size', '')

            # Check if matches preferences
            size_match = False
            for preferred_size in size_preferences:
                if preferred_size in breed_size:
                    size_match = True
                    break

            # Since this is a flexible constraint, usually won't filter out, only reflected in scores
            # But if user is very explicit (e.g., only wants small dogs), can filter
            if not size_match and len(size_preferences) == 1:
                # Only filter when user has very explicit preference for single size
                preferred = size_preferences[0]
                if ((preferred == 'small' and 'large' in breed_size) or
                    (preferred == 'large' and 'small' in breed_size)):
                    filtered[breed] = f"Size mismatch: prefer {preferred} but breed is {breed_size}"

        return filtered

    def filter_exercise_mismatch(self, candidates: Set[str],
                                dimensions: QueryDimensions) -> Dict[str, str]:
        """Filter breeds with severe exercise mismatches using dynamic thresholds"""
        filtered = {}

        # Extract user exercise profile dynamically
        user_profile = self._extract_exercise_profile(dimensions)
        compatibility_threshold = self._get_exercise_threshold(user_profile)

        for breed in candidates:
            breed_info = self.breed_cache.get(breed, {})
            breed_exercise_level = self._normalize_exercise_level(breed_info.get('exercise_needs', 'Moderate'))

            # Calculate exercise compatibility score
            compatibility = self._calculate_exercise_compatibility(
                user_profile, breed_exercise_level
            )

            # Apply threshold-based filtering
            if compatibility < compatibility_threshold:
                reason = self._generate_exercise_filter_reason(user_profile, breed_exercise_level)
                filtered[breed] = reason

        return filtered

    def _extract_exercise_profile(self, dimensions: QueryDimensions) -> Dict[str, str]:
        """Extract comprehensive user exercise profile"""
        activity_text = ' '.join(dimensions.activity_level).lower()
        spatial_text = ' '.join(dimensions.spatial_constraints).lower()

        # Determine exercise level
        if any(term in activity_text for term in ['don\'t exercise', 'minimal', 'low', 'light walks']):
            level = 'low'
        elif any(term in activity_text for term in ['hiking', 'running', 'active', 'athletic']):
            level = 'high'
        elif any(term in activity_text for term in ['30 minutes', 'moderate', 'balanced']):
            level = 'moderate'
        else:
            # Infer from living space
            if 'apartment' in spatial_text:
                level = 'low_moderate'
            else:
                level = 'moderate'

        # Determine time commitment
        if any(term in activity_text for term in ['30 minutes', 'half hour']):
            time = 'limited'
        elif any(term in activity_text for term in ['hiking', 'outdoor activities']):
            time = 'extensive'
        else:
            time = 'moderate'

        return {'level': level, 'time': time}

    def _get_exercise_threshold(self, user_profile: Dict[str, str]) -> float:
        """Get dynamic threshold based on user profile"""
        base_threshold = 0.4

        # Adjust threshold based on user constraints
        if user_profile['level'] == 'low':
            base_threshold = 0.6  # Stricter for low-activity users
        elif user_profile['level'] == 'high':
            base_threshold = 0.3  # More lenient for active users

        return base_threshold

    def _calculate_exercise_compatibility(self, user_profile: Dict[str, str], breed_level: str) -> float:
        """Calculate dynamic exercise compatibility"""
        # Exercise level compatibility matrix
        compatibility_matrix = {
            'low': {'low': 1.0, 'moderate': 0.7, 'high': 0.3, 'very_high': 0.1},
            'low_moderate': {'low': 0.9, 'moderate': 1.0, 'high': 0.5, 'very_high': 0.2},
            'moderate': {'low': 0.8, 'moderate': 1.0, 'high': 0.8, 'very_high': 0.4},
            'high': {'low': 0.5, 'moderate': 0.8, 'high': 1.0, 'very_high': 0.9}
        }

        user_level = user_profile['level']
        base_compatibility = compatibility_matrix.get(user_level, {}).get(breed_level, 0.5)

        # Adjust for time commitment
        if user_profile['time'] == 'limited' and breed_level in ['high', 'very_high']:
            base_compatibility *= 0.7
        elif user_profile['time'] == 'extensive' and breed_level == 'low':
            base_compatibility *= 0.8

        return base_compatibility

    def _generate_exercise_filter_reason(self, user_profile: Dict[str, str], breed_level: str) -> str:
        """Generate dynamic exercise filtering reason"""
        user_level = user_profile['level']

        if user_level == 'low' and breed_level in ['high', 'very_high']:
            return f"High-energy breed unsuitable for low-activity lifestyle"
        elif user_level == 'high' and breed_level == 'low':
            return f"Low-energy breed may not match active lifestyle requirements"
        else:
            return f"Exercise requirements mismatch: {user_level} user with {breed_level} breed"

    def filter_size_bias(self, candidates: Set[str], dimensions: QueryDimensions) -> Dict[str, str]:
        """Filter to correct size bias for moderate lifestyle users"""
        filtered = {}

        # Detect moderate lifestyle indicators
        activity_text = ' '.join(dimensions.activity_level).lower()
        is_moderate_lifestyle = any(term in activity_text for term in
                                   ['moderate', 'balanced', '30 minutes', 'medium-sized house'])

        if not is_moderate_lifestyle:
            return filtered  # No filtering needed

        # Count size distribution in candidates
        size_counts = {'toy': 0, 'small': 0, 'medium': 0, 'large': 0, 'giant': 0}
        total_candidates = len(candidates)

        for breed in candidates:
            breed_info = self.breed_cache.get(breed, {})
            breed_size = self._normalize_breed_size(breed_info.get('size', 'Medium'))
            size_counts[breed_size] += 1

        # Check for size bias (too many large/giant breeds)
        large_giant_ratio = (size_counts['large'] + size_counts['giant']) / max(total_candidates, 1)

        if large_giant_ratio > 0.6:  # More than 60% large/giant breeds
            # Filter some large/giant breeds to balance distribution
            large_giant_filtered = 0
            target_reduction = int((large_giant_ratio - 0.4) * total_candidates)

            for breed in list(candidates):
                if large_giant_filtered >= target_reduction:
                    break

                breed_info = self.breed_cache.get(breed, {})
                breed_size = self._normalize_breed_size(breed_info.get('size', 'Medium'))

                if breed_size in ['large', 'giant']:
                    # Check if breed has additional compatibility issues
                    exercise_level = self._normalize_exercise_level(
                        breed_info.get('exercise_needs', 'Moderate')
                    )

                    if breed_size == 'giant' or exercise_level == 'very_high':
                        filtered[breed] = f"Size bias correction: {breed_size} breed less suitable for moderate lifestyle"
                        large_giant_filtered += 1

        return filtered

    def _get_emergency_candidates(self) -> Set[str]:
        """Get emergency candidate breeds (safest choices)"""
        safe_breeds = {
            'Labrador_Retriever', 'Golden_Retriever', 'Cavalier_King_Charles_Spaniel',
            'Bichon_Frise', 'French_Bulldog', 'Boston_Terrier', 'Pug'
        }

        # Only return breeds that exist in the database
        available_safe_breeds = safe_breeds.intersection(set(self.breed_list))

        if not available_safe_breeds:
            # If even safe breeds are not available, return first few breeds
            return set(self.breed_list[:5])

        return available_safe_breeds

    def get_constraint_summary(self, filter_result: FilterResult) -> Dict[str, Any]:
        """Get constraint application summary"""
        return {
            'total_breeds': len(self.breed_list),
            'passed_breeds': len(filter_result.passed_breeds),
            'filtered_breeds': len(filter_result.filtered_breeds),
            'applied_constraints': filter_result.applied_constraints,
            'relaxed_constraints': filter_result.relaxed_constraints,
            'warnings': filter_result.warnings,
            'pass_rate': len(filter_result.passed_breeds) / len(self.breed_list),
            'filter_breakdown': self._get_filter_breakdown(filter_result)
        }

    def _get_filter_breakdown(self, filter_result: FilterResult) -> Dict[str, int]:
        """Get filtering reason breakdown"""
        breakdown = {}

        for breed, reason in filter_result.filtered_breeds.items():
            # Simplify reason categorization
            if 'apartment' in reason.lower() or 'large' in reason.lower():
                category = 'Size/Space Issues'
            elif 'child' in reason.lower():
                category = 'Child Safety'
            elif 'allerg' in reason.lower() or 'shed' in reason.lower():
                category = 'Allergy Concerns'
            elif 'exercise' in reason.lower() or 'activity' in reason.lower():
                category = 'Exercise/Activity Mismatch'
            elif 'noise' in reason.lower() or 'bark' in reason.lower():
                category = 'Noise Issues'
            elif 'groom' in reason.lower() or 'maintenance' in reason.lower():
                category = 'Maintenance Requirements'
            elif 'experience' in reason.lower() or 'first-time' in reason.lower():
                category = 'Experience Level'
            else:
                category = 'Other'

            breakdown[category] = breakdown.get(category, 0) + 1

        return breakdown

def apply_breed_constraints(dimensions: QueryDimensions,
                          min_candidates: int = 12) -> FilterResult:
    """
    Convenience function: Apply breed constraint filtering

    Args:
        dimensions: Query dimensions
        min_candidates: Minimum number of candidate breeds

    Returns:
        FilterResult: Filtering results
    """
    manager = ConstraintManager()
    return manager.apply_constraints(dimensions, min_candidates)

def get_filtered_breeds(dimensions: QueryDimensions) -> Tuple[List[str], Dict[str, Any]]:
    """
    Convenience function: Get filtered breed list and summary

    Args:
        dimensions: Query dimensions

    Returns:
        Tuple: (Filtered breed list, filtering summary)
    """
    manager = ConstraintManager()
    result = manager.apply_constraints(dimensions)
    summary = manager.get_constraint_summary(result)

    return list(result.passed_breeds), summary