Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,69 @@
|
|
|
|
|
| 1 |
import asyncio
|
| 2 |
-
|
| 3 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
-
# -------------------------------
|
| 8 |
MODEL_NAME = "LiquidAI/LFM2-2.6B"
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
print("Loading model...")
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# Entry point
|
| 48 |
-
# -------------------------------
|
| 49 |
-
if __name__ == "__main__":
|
| 50 |
-
asyncio.run(main())
|
|
|
|
| 1 |
+
import os
|
| 2 |
import asyncio
|
| 3 |
+
import pandas as pd
|
| 4 |
from datasets import load_dataset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
import torch
|
| 7 |
+
import gradio as gr
|
| 8 |
|
| 9 |
+
# Paths
|
| 10 |
+
PROMPTS_CSV = "prompts.csv"
|
|
|
|
| 11 |
MODEL_NAME = "LiquidAI/LFM2-2.6B"
|
| 12 |
|
| 13 |
+
# Check for dataset, download if missing
|
| 14 |
+
if not os.path.exists(PROMPTS_CSV):
|
| 15 |
+
print("prompts.csv not found. Downloading dataset from Hugging Face...")
|
| 16 |
+
dataset = load_dataset("fka/awesome-chatgpt-prompts", split="train")
|
| 17 |
+
df = pd.DataFrame(dataset)
|
| 18 |
+
df.to_csv(PROMPTS_CSV, index=False)
|
| 19 |
+
print("Dataset saved to prompts.csv")
|
| 20 |
+
else:
|
| 21 |
+
df = pd.read_csv(PROMPTS_CSV)
|
| 22 |
+
|
| 23 |
+
all_prompts = df['prompt'].tolist()
|
| 24 |
+
print(f"Total prompts available: {len(all_prompts)}")
|
| 25 |
+
|
| 26 |
+
# Load first 20 prompts for fast startup
|
| 27 |
+
fast_prompts = all_prompts[:20]
|
| 28 |
+
remaining_prompts = all_prompts[20:]
|
| 29 |
+
|
| 30 |
+
# Load tokenizer and model
|
| 31 |
print("Loading model...")
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 33 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
+
model.to(device)
|
| 36 |
+
print(f"Model loaded on {device}")
|
| 37 |
|
| 38 |
+
# Async function to load remaining prompts
|
| 39 |
+
async def load_remaining_prompts():
|
| 40 |
+
global fast_prompts
|
| 41 |
+
print("Loading remaining prompts asynchronously...")
|
| 42 |
+
await asyncio.sleep(1) # simulate async loading
|
| 43 |
+
fast_prompts.extend(remaining_prompts)
|
| 44 |
+
print("All prompts loaded.")
|
| 45 |
+
|
| 46 |
+
# Function to generate response
|
| 47 |
+
def generate_response(prompt, max_tokens=100):
|
| 48 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 49 |
+
outputs = model.generate(**inputs, max_new_tokens=max_tokens)
|
| 50 |
+
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
| 51 |
+
return response
|
| 52 |
+
|
| 53 |
+
# Gradio interface
|
| 54 |
+
def chat_with_prompt(prompt_idx):
|
| 55 |
+
prompt = fast_prompts[prompt_idx]
|
| 56 |
+
response = generate_response(prompt)
|
| 57 |
+
return f"Prompt:\n{prompt}\n\nResponse:\n{response}"
|
| 58 |
+
|
| 59 |
+
with gr.Blocks() as demo:
|
| 60 |
+
gr.Markdown("## ChatGPT Prompt Tester")
|
| 61 |
+
prompt_dropdown = gr.Dropdown(choices=[str(i) for i in range(len(fast_prompts))], label="Select Prompt Index")
|
| 62 |
+
output_text = gr.Textbox(label="Model Response", lines=15)
|
| 63 |
+
prompt_dropdown.change(chat_with_prompt, inputs=prompt_dropdown, outputs=output_text)
|
| 64 |
+
|
| 65 |
+
# Run async loading in the background
|
| 66 |
+
asyncio.create_task(load_remaining_prompts())
|
| 67 |
+
|
| 68 |
+
# Launch Gradio
|
| 69 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|