Spaces:
Sleeping
Sleeping
File size: 6,813 Bytes
088d0d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import torch
from transformers import (
BertForSequenceClassification,
BertTokenizer,
CLIPProcessor,
CLIPModel,
pipeline
)
from PIL import Image
import pytesseract
import numpy as np
import cv2
class BertClipMemeAnalyzer:
def __init__(self):
# BERT for sentiment analysis
self.bert_sentiment = pipeline(
"sentiment-analysis",
model="nlptown/bert-base-multilingual-uncased-sentiment"
)
# Alternative: Use a BERT model specifically
# self.bert_model = BertForSequenceClassification.from_pretrained(
# "bert-base-uncased",
# num_labels=3 # positive, negative, neutral
# )
# self.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# CLIP for zero-shot image classification
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Define meme categories for CLIP
self.meme_categories = [
"a hateful meme",
"a non-hateful meme",
"a funny meme",
"an offensive meme",
"a wholesome meme",
"a sarcastic meme",
"a political meme",
"a neutral meme"
]
def extract_text_from_image(self, image):
"""Extract text using OCR"""
try:
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
enhanced = cv2.convertScaleAbs(gray, alpha=1.5, beta=0)
text = pytesseract.image_to_string(enhanced)
return text.strip()
except:
return ""
def classify_with_clip(self, image):
"""Use CLIP to classify meme type"""
# Prepare inputs
inputs = self.clip_processor(
text=self.meme_categories,
images=image,
return_tensors="pt",
padding=True
)
# Get predictions
with torch.no_grad():
outputs = self.clip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
# Get results
results = []
for i, (category, prob) in enumerate(zip(self.meme_categories, probs[0])):
results.append({
'category': category.replace("a ", "").replace(" meme", ""),
'score': prob.item()
})
# Sort by score
results.sort(key=lambda x: x['score'], reverse=True)
return results
def analyze_meme(self, text_input, image):
output = "## π Meme Analysis Results\n\n"
# Extract text if image provided
extracted_text = ""
if image is not None:
extracted_text = self.extract_text_from_image(image)
if extracted_text:
output += f"### π Extracted Text (OCR):\n`{extracted_text}`\n\n"
# Combine texts
full_text = text_input or ""
if extracted_text:
full_text = f"{full_text} {extracted_text}".strip()
# BERT Sentiment Analysis
if full_text:
output += "### π§ BERT Sentiment Analysis:\n"
sentiment_results = self.bert_sentiment(full_text)
# Map to your categories
label_map = {
'1 star': 'Very Negative',
'2 stars': 'Negative',
'3 stars': 'Neutral',
'4 stars': 'Positive',
'5 stars': 'Very Positive',
'POSITIVE': 'Positive',
'NEGATIVE': 'Negative',
'NEUTRAL': 'Neutral'
}
sentiment = sentiment_results[0]
mapped_label = label_map.get(sentiment['label'], sentiment['label'])
output += f"**{mapped_label}** (Confidence: {sentiment['score']:.1%})\n\n"
else:
output += "### π§ BERT Sentiment Analysis:\n"
output += "No text provided for sentiment analysis\n\n"
# CLIP Meme Classification
if image is not None:
output += "### πΌοΈ CLIP Meme Classification:\n"
clip_results = self.classify_with_clip(image)
# Top prediction
top = clip_results[0]
output += f"**Primary Classification: {top['category'].title()}** ({top['score']:.1%})\n\n"
# Hateful/Non-hateful specific
hateful_score = next(r['score'] for r in clip_results if 'hateful' in r['category'])
non_hateful_score = next(r['score'] for r in clip_results if 'non-hateful' in r['category'])
if hateful_score > non_hateful_score:
output += f"β οΈ **Hate Detection: Potentially Hateful** ({hateful_score:.1%})\n\n"
else:
output += f"β
**Hate Detection: Non-hateful** ({non_hateful_score:.1%})\n\n"
# All classifications
output += "**All Classifications:**\n"
for result in clip_results:
bar = "β" * int(result['score'] * 20)
output += f"- {result['category'].title()}: {bar} {result['score']:.1%}\n"
else:
output += "### πΌοΈ CLIP Meme Classification:\n"
output += "No image provided for classification\n\n"
# Summary
output += "\n### π Summary:\n"
if full_text:
output += f"- Text analyzed: {len(full_text.split())} words\n"
if image:
output += f"- Image analyzed: β\n"
if extracted_text:
output += f"- OCR successful: β\n"
return output
# Initialize
analyzer = BertClipMemeAnalyzer()
# Create interface
demo = gr.Interface(
fn=analyzer.analyze_meme,
inputs=[
gr.Textbox(
label="π Text Input (Optional)",
placeholder="Enter meme text or leave empty for OCR...",
lines=2
),
gr.Image(
label="πΌοΈ Upload Meme",
type="pil"
)
],
outputs=gr.Markdown(label="Analysis Results"),
title="π BERT + CLIP Meme Analyzer",
description="""
This analyzer uses:
- **BERT**: For sentiment analysis of text (Positive/Negative/Neutral)
- **CLIP**: For zero-shot meme classification (Hateful/Non-hateful, Funny, etc.)
- **OCR**: To extract text from meme images
Upload a meme to see both text sentiment and visual classification!
""",
theme=gr.themes.Soft()
)
demo.launch() |