Spaces:
Sleeping
Sleeping
Create document_ai.py
Browse files- models/document_ai.py +137 -0
models/document_ai.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
# Try to import pytesseract, but handle if it's not available
|
| 8 |
+
try:
|
| 9 |
+
import pytesseract
|
| 10 |
+
TESSERACT_AVAILABLE = True
|
| 11 |
+
except ImportError:
|
| 12 |
+
TESSERACT_AVAILABLE = False
|
| 13 |
+
|
| 14 |
+
# Check if tesseract is installed
|
| 15 |
+
if TESSERACT_AVAILABLE:
|
| 16 |
+
try:
|
| 17 |
+
pytesseract.get_tesseract_version()
|
| 18 |
+
except Exception:
|
| 19 |
+
TESSERACT_AVAILABLE = False
|
| 20 |
+
|
| 21 |
+
# Initialize the model and processor with caching
|
| 22 |
+
processor = None
|
| 23 |
+
model = None
|
| 24 |
+
|
| 25 |
+
def get_document_ai_models():
|
| 26 |
+
"""Get or initialize document AI models with proper caching."""
|
| 27 |
+
global processor, model
|
| 28 |
+
if processor is None:
|
| 29 |
+
from transformers import LayoutLMv2Processor
|
| 30 |
+
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 31 |
+
if model is None:
|
| 32 |
+
from transformers import LayoutLMv2ForSequenceClassification
|
| 33 |
+
model = LayoutLMv2ForSequenceClassification.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 34 |
+
return processor, model
|
| 35 |
+
|
| 36 |
+
def extract_text_with_tesseract(image):
|
| 37 |
+
"""Extract text using Tesseract OCR."""
|
| 38 |
+
if not TESSERACT_AVAILABLE:
|
| 39 |
+
raise RuntimeError("tesseract is not installed or it's not in your PATH. See README file for more information.")
|
| 40 |
+
|
| 41 |
+
if isinstance(image, np.ndarray):
|
| 42 |
+
pil_image = Image.fromarray(image).convert("RGB")
|
| 43 |
+
else:
|
| 44 |
+
pil_image = image.convert("RGB")
|
| 45 |
+
|
| 46 |
+
# Use pytesseract for OCR
|
| 47 |
+
text = pytesseract.image_to_string(pil_image)
|
| 48 |
+
|
| 49 |
+
# Get word boxes for structure
|
| 50 |
+
boxes = pytesseract.image_to_data(pil_image, output_type=pytesseract.Output.DICT)
|
| 51 |
+
|
| 52 |
+
# Extract words and their positions
|
| 53 |
+
words = []
|
| 54 |
+
word_boxes = []
|
| 55 |
+
|
| 56 |
+
for i in range(len(boxes['text'])):
|
| 57 |
+
if boxes['text'][i].strip() != '':
|
| 58 |
+
words.append(boxes['text'][i])
|
| 59 |
+
x, y, w, h = boxes['left'][i], boxes['top'][i], boxes['width'][i], boxes['height'][i]
|
| 60 |
+
word_boxes.append([x, y, x + w, y + h])
|
| 61 |
+
|
| 62 |
+
return words, word_boxes
|
| 63 |
+
|
| 64 |
+
def extract_text_with_transformers(image):
|
| 65 |
+
"""Extract text using transformers models when Tesseract is not available."""
|
| 66 |
+
try:
|
| 67 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 68 |
+
|
| 69 |
+
# Initialize the processor and model
|
| 70 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
| 71 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
|
| 72 |
+
|
| 73 |
+
# Prepare the image
|
| 74 |
+
if isinstance(image, np.ndarray):
|
| 75 |
+
pil_image = Image.fromarray(image).convert("RGB")
|
| 76 |
+
else:
|
| 77 |
+
pil_image = image.convert("RGB")
|
| 78 |
+
|
| 79 |
+
# Process the image
|
| 80 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
| 81 |
+
generated_ids = model.generate(pixel_values)
|
| 82 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 83 |
+
|
| 84 |
+
# Split into words
|
| 85 |
+
words = generated_text.split()
|
| 86 |
+
|
| 87 |
+
# Since we don't have bounding boxes, return empty boxes
|
| 88 |
+
word_boxes = [[0, 0, 0, 0] for _ in words]
|
| 89 |
+
|
| 90 |
+
return words, word_boxes
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
# If transformers OCR fails, return a simple error message
|
| 94 |
+
return ["Error extracting text with transformers OCR:", str(e)], [[0, 0, 0, 0], [0, 0, 0, 0]]
|
| 95 |
+
|
| 96 |
+
def extract_text_and_layout(image):
|
| 97 |
+
"""
|
| 98 |
+
Extract text and layout information using OCR.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
image: PIL Image object
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
Dictionary with extracted text and layout information
|
| 105 |
+
"""
|
| 106 |
+
# Convert numpy array to PIL Image if needed
|
| 107 |
+
if isinstance(image, np.ndarray):
|
| 108 |
+
image = Image.fromarray(image).convert("RGB")
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
# Try Tesseract first
|
| 112 |
+
if TESSERACT_AVAILABLE:
|
| 113 |
+
words, boxes = extract_text_with_tesseract(image)
|
| 114 |
+
else:
|
| 115 |
+
# Fall back to transformers OCR
|
| 116 |
+
words, boxes = extract_text_with_transformers(image)
|
| 117 |
+
except Exception as e:
|
| 118 |
+
# If both methods fail, return the error
|
| 119 |
+
return {
|
| 120 |
+
'words': [f"Error extracting text: {str(e)}"],
|
| 121 |
+
'boxes': [[0, 0, 0, 0]],
|
| 122 |
+
'success': False
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
# If no words were found, return empty result
|
| 126 |
+
if not words:
|
| 127 |
+
return {
|
| 128 |
+
'words': [],
|
| 129 |
+
'boxes': [],
|
| 130 |
+
'success': False
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
return {
|
| 134 |
+
'words': words,
|
| 135 |
+
'boxes': boxes,
|
| 136 |
+
'success': True
|
| 137 |
+
}
|