File size: 12,000 Bytes
f472b08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Union
import pytest
import torch
from datasets import load_dataset
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
)
from peft import CPTConfig, TaskType, get_peft_model
TEMPLATE = {"input": "input: {}", "intra_seperator": " ", "output": "output: {}", "inter_seperator": "\n"}
MODEL_NAME = "hf-internal-testing/tiny-random-OPTForCausalLM"
MAX_INPUT_LENGTH = 1024
@pytest.fixture(scope="module")
def global_tokenizer():
"""Load the tokenizer fixture for the model."""
return AutoTokenizer.from_pretrained(MODEL_NAME, padding_side="right")
@pytest.fixture(scope="module")
def config_text():
"""Load the SST2 dataset and prepare it for testing."""
config = CPTConfig(
cpt_token_ids=[0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing
cpt_mask=[1, 1, 1, 1, 1, 1, 1, 1],
cpt_tokens_type_mask=[1, 2, 2, 2, 3, 3, 3, 4],
opt_weighted_loss_type="decay",
opt_loss_decay_factor=0.95,
opt_projection_epsilon=0.2,
opt_projection_format_epsilon=0.1,
tokenizer_name_or_path=MODEL_NAME,
)
return config
@pytest.fixture(scope="module")
def config_random():
"""Load the SST2 dataset and prepare it for testing."""
config = CPTConfig(
opt_weighted_loss_type="decay",
opt_loss_decay_factor=0.95,
opt_projection_epsilon=0.2,
opt_projection_format_epsilon=0.1,
tokenizer_name_or_path=MODEL_NAME,
)
return config
@pytest.fixture(scope="module")
def sst_data():
"""Load the SST2 dataset and prepare it for testing."""
data = load_dataset("glue", "sst2")
def add_string_labels(example):
if example["label"] == 0:
example["label_text"] = "negative"
elif example["label"] == 1:
example["label_text"] = "positive"
return example
train_dataset = data["train"].select(range(4)).map(add_string_labels)
test_dataset = data["validation"].select(range(10)).map(add_string_labels)
return {"train": train_dataset, "test": test_dataset}
@pytest.fixture(scope="module")
def collator(global_tokenizer):
class CPTDataCollatorForLanguageModeling(DataCollatorForLanguageModeling):
def __init__(self, tokenizer, training=True, mlm=False):
super().__init__(tokenizer, mlm=mlm)
self.training = training
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # mk check why needed
def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
# Handle dict or lists with proper padding and conversion to tensor.
list_sample_mask = []
for i in range(len(examples)):
if "sample_mask" in examples[i].keys():
list_sample_mask.append(examples[i].pop("sample_mask"))
max_len = max(len(ex["input_ids"]) for ex in examples)
def pad_sequence(sequence, max_len, pad_value=0):
return sequence + [pad_value] * (max_len - len(sequence))
input_ids = torch.tensor([pad_sequence(ex["input_ids"], max_len) for ex in examples])
attention_mask = torch.tensor([pad_sequence(ex["attention_mask"], max_len) for ex in examples])
input_type_mask = torch.tensor([pad_sequence(ex["input_type_mask"], max_len) for ex in examples])
batch = {"input_ids": input_ids, "attention_mask": attention_mask, "input_type_mask": input_type_mask}
tensor_sample_mask = batch["input_ids"].clone().long()
tensor_sample_mask[:, :] = 0
for i in range(len(list_sample_mask)):
tensor_sample_mask[i, : len(list_sample_mask[i])] = list_sample_mask[i]
batch["labels"] = batch["input_ids"].clone()
if not self.training:
batch["sample_mask"] = tensor_sample_mask
return batch
collator = CPTDataCollatorForLanguageModeling(global_tokenizer, training=True, mlm=False)
return collator
def dataset(data, tokenizer):
class CPTDataset(Dataset):
def __init__(self, samples, tokenizer, template, max_length=MAX_INPUT_LENGTH):
self.template = template
self.tokenizer = tokenizer
self.max_length = max_length
self.attention_mask = []
self.input_ids = []
self.input_type_mask = []
self.inter_seperator_ids = self._get_input_ids(template["inter_seperator"])
for sample_i in tqdm(samples):
input_text, label = sample_i["sentence"], sample_i["label_text"]
input_ids, attention_mask, input_type_mask = self.preprocess_sentence(input_text, label)
self.input_ids.append(input_ids)
self.attention_mask.append(attention_mask)
self.input_type_mask.append(input_type_mask)
def _get_input_ids(self, text):
return self.tokenizer(text, add_special_tokens=False)["input_ids"]
def preprocess_sentence(self, input_text, label):
input_template_part_1_text, input_template_part_2_text = self.template["input"].split("{}")
input_template_tokenized_part1 = self._get_input_ids(input_template_part_1_text)
input_tokenized = self._get_input_ids(input_text)
input_template_tokenized_part2 = self._get_input_ids(input_template_part_2_text)
sep_tokenized = self._get_input_ids(self.template["intra_seperator"])
label_template_part_1, label_template_part_2 = self.template["output"].split("{}")
label_template_part1_tokenized = self._get_input_ids(label_template_part_1)
label_tokenized = self._get_input_ids(label)
label_template_part2_tokenized = self._get_input_ids(label_template_part_2)
eos = [self.tokenizer.eos_token_id] if self.tokenizer.eos_token_id is not None else []
input_ids = (
input_template_tokenized_part1
+ input_tokenized
+ input_template_tokenized_part2
+ sep_tokenized
+ label_template_part1_tokenized
+ label_tokenized
+ label_template_part2_tokenized
+ eos
)
# determine label tokens, to calculate loss only over them when labels_loss == True
attention_mask = [1] * len(input_ids)
input_type_mask = (
[1] * len(input_template_tokenized_part1)
+ [2] * len(input_tokenized)
+ [1] * len(input_template_tokenized_part2)
+ [0] * len(sep_tokenized)
+ [3] * len(label_template_part1_tokenized)
+ [4] * len(label_tokenized)
+ [3] * len(label_template_part2_tokenized)
+ [0] * len(eos)
)
assert len(input_type_mask) == len(input_ids) == len(attention_mask)
return input_ids, attention_mask, input_type_mask
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return {
"input_ids": self.input_ids[idx],
"attention_mask": self.attention_mask[idx],
"input_type_mask": self.input_type_mask[idx],
}
dataset = CPTDataset(data, tokenizer, TEMPLATE)
return dataset
def test_model_initialization_text(global_tokenizer, config_text):
"""Test model loading and PEFT model initialization."""
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model = get_peft_model(base_model, config_text)
assert model is not None, "PEFT model initialization failed"
def test_model_initialization_random(global_tokenizer, config_random):
"""Test model loading and PEFT model initialization."""
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model = get_peft_model(base_model, config_random)
assert model is not None, "PEFT model initialization failed"
def test_model_initialization_wrong_task_type_warns():
# TODO: adjust this test to check for an error with PEFT v0.18.0
msg = "CPTConfig only supports task_type = CAUSAL_LM, setting it automatically"
with pytest.warns(FutureWarning, match=msg):
config = CPTConfig(task_type=TaskType.SEQ_CLS)
assert config.task_type == TaskType.CAUSAL_LM
def test_model_training_random(sst_data, global_tokenizer, collator, config_random):
"""Perform a short training run to verify the model and data integration."""
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model = get_peft_model(base_model, config_random)
emb = model.prompt_encoder.default.embedding.weight.data.clone().detach()
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=1,
num_train_epochs=2,
remove_unused_columns=False,
save_strategy="no",
logging_steps=1,
)
train_dataset = dataset(sst_data["train"], global_tokenizer)
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, data_collator=collator)
trainer.train()
# Verify that the embedding tensor remains unchanged (frozen)
assert torch.all(model.prompt_encoder.default.embedding.weight.data.clone().detach().cpu() == emb.cpu())
delta_emb = model.prompt_encoder.default.get_projection().clone().detach()
norm_delta = delta_emb.norm(dim=1).cpu()
epsilon = model.prompt_encoder.default.get_epsilon().cpu()
# Verify that the change in tokens is constrained to epsilon
assert torch.all(norm_delta <= epsilon)
def test_model_batch_training_text(sst_data, global_tokenizer, collator, config_text):
"""Perform a short training run to verify the model and data integration."""
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model = get_peft_model(base_model, config_text)
emb = model.prompt_encoder.default.embedding.weight.data.clone().detach()
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=2,
num_train_epochs=2,
remove_unused_columns=False,
save_strategy="no",
logging_steps=1,
)
train_dataset = dataset(sst_data["train"], global_tokenizer)
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, data_collator=collator)
trainer.train()
# Verify that the embedding tensor remains unchanged (frozen)
assert torch.all(model.prompt_encoder.default.embedding.weight.data.clone().detach().cpu() == emb.cpu())
cpt_tokens_type_mask = torch.Tensor(config_text.cpt_tokens_type_mask).long()
non_label_idx = (cpt_tokens_type_mask == 1) | (cpt_tokens_type_mask == 2) | (cpt_tokens_type_mask == 3)
delta_emb = model.prompt_encoder.default.get_projection().clone().detach()
norm_delta = delta_emb.norm(dim=1).cpu()
epsilon = model.prompt_encoder.default.get_epsilon().cpu()
# Verify that the change in tokens is constrained to epsilon
assert torch.all(norm_delta <= epsilon)
# Ensure that label tokens remain unchanged
assert torch.all((norm_delta == 0) == (~non_label_idx))
|