# app.py - JOINED VIDEO SENTENCE ANALYZER # Analyzes ONE long video with multiple signs and builds a sentence import torch import torch.nn as nn from transformers import XCLIPProcessor, XCLIPModel import gradio as gr import cv2 import numpy as np from PIL import Image import pandas as pd from datetime import datetime import os import tempfile print("🚀 Loading Ugandan Sign Language Model...") # ============================================================================ # MODEL SETUP - MINIMALCLASSIFIER # ============================================================================ class MinimalClassifier(nn.Module): """SIMPLE classifier - matches your training notebook exactly""" def __init__(self, input_dim=512, num_classes=85, dropout=0.5): super().__init__() self.classifier = nn.Sequential( nn.Dropout(dropout), nn.Linear(input_dim, num_classes) ) def forward(self, x): return self.classifier(x) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = XCLIPProcessor.from_pretrained("microsoft/xclip-base-patch32") xclip_model = XCLIPModel.from_pretrained("microsoft/xclip-base-patch32").to(device) xclip_model.eval() # Load your trained model try: checkpoint = torch.load("finetuned_xclip_model.pth", map_location=device, weights_only=False) if 'num_classes' in checkpoint: num_classes = checkpoint['num_classes'] elif 'id_to_label' in checkpoint: num_classes = len(checkpoint['id_to_label']) else: num_classes = 85 model = MinimalClassifier( input_dim=512, num_classes=num_classes, dropout=0.5 ).to(device) if 'model_state_dict' in checkpoint: model.load_state_dict(checkpoint['model_state_dict']) else: model.load_state_dict(checkpoint) if 'id_to_label' in checkpoint: id_to_label = checkpoint['id_to_label'] else: id_to_label = {i: f"class_{i}" for i in range(num_classes)} label_to_id = {v: k for k, v in id_to_label.items()} model.eval() print(f"✅ Model loaded! Can recognize {len(id_to_label)} signs") except Exception as e: print(f"❌ Error loading model: {e}") exit(1) # ============================================================================ # CORE FUNCTIONS - VIDEO SPLITTING & ANALYSIS WITH MOTION DETECTION # ============================================================================ def detect_motion_changes(video_path, threshold=30): """ Detect motion changes in video to find sign boundaries Args: video_path: Path to video threshold: Motion threshold (higher = less sensitive) Returns: List of frame indices where significant motion changes occur """ try: cap = cv2.VideoCapture(video_path) # Read first frame ret, prev_frame = cap.read() if not ret: cap.release() return [] prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY) prev_gray = cv2.GaussianBlur(prev_gray, (21, 21), 0) motion_scores = [] frame_idx = 0 while True: ret, frame = cap.read() if not ret: break # Convert to grayscale and blur gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # Calculate difference between frames frame_delta = cv2.absdiff(prev_gray, gray) thresh = cv2.threshold(frame_delta, 25, 255, cv2.THRESH_BINARY)[1] # Calculate motion score (percentage of changed pixels) motion_score = np.sum(thresh) / (thresh.shape[0] * thresh.shape[1]) motion_scores.append((frame_idx, motion_score)) prev_gray = gray frame_idx += 1 cap.release() # Find peaks in motion (where motion suddenly increases/decreases) # This indicates transitions between signs boundaries = [0] # Start with first frame if len(motion_scores) > 10: # Smooth motion scores window_size = 5 smoothed = [] for i in range(len(motion_scores)): start = max(0, i - window_size) end = min(len(motion_scores), i + window_size + 1) avg_score = np.mean([s[1] for s in motion_scores[start:end]]) smoothed.append((motion_scores[i][0], avg_score)) # Find local minima (pauses between signs) for i in range(10, len(smoothed) - 10): # Check if this is a local minimum current_score = smoothed[i][1] prev_scores = [smoothed[j][1] for j in range(i-10, i)] next_scores = [smoothed[j][1] for j in range(i+1, i+11)] if current_score < np.mean(prev_scores) * 0.3 and current_score < np.mean(next_scores) * 0.3: # Significant pause detected boundaries.append(smoothed[i][0]) return boundaries except Exception as e: print(f"❌ Motion detection error: {e}") return [0] def split_video_smart(video_path, num_signs=None, use_motion_detection=True): """ Smart video splitting using motion detection OR equal segments Args: video_path: Path to the joined video num_signs: Expected number of signs (optional if using motion detection) use_motion_detection: Whether to use automatic boundary detection Returns: List of segment video paths """ try: cap = cv2.VideoCapture(video_path) # Get video properties fps = int(cap.get(cv2.CAP_PROP_FPS)) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) if total_frames == 0: cap.release() return [] # Determine split points if use_motion_detection: print("🔍 Using motion detection to find sign boundaries...") boundaries = detect_motion_changes(video_path) # Filter boundaries to get approximately num_signs segments if num_signs and len(boundaries) > num_signs + 1: # Too many boundaries detected, keep the strongest ones # Sort by spacing and keep most evenly spaced step = len(boundaries) // (num_signs + 1) boundaries = [boundaries[i * step] for i in range(num_signs + 1)] boundaries.append(total_frames) # Add end frame boundaries = sorted(list(set(boundaries))) # Remove duplicates print(f"✅ Found {len(boundaries)-1} sign segments at frames: {boundaries}") else: # Fall back to equal segments print(f"📏 Splitting into {num_signs} equal segments...") frames_per_segment = total_frames // num_signs boundaries = [i * frames_per_segment for i in range(num_signs + 1)] boundaries[-1] = total_frames segment_paths = [] temp_dir = tempfile.mkdtemp() # Create segments based on boundaries for segment_idx in range(len(boundaries) - 1): start_frame = boundaries[segment_idx] end_frame = boundaries[segment_idx + 1] # Skip very short segments (less than 5 frames) if end_frame - start_frame < 5: continue segment_path = os.path.join(temp_dir, f"segment_{segment_idx}.mp4") fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(segment_path, fourcc, fps, (width, height)) # Write frames for this segment cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame) for frame_idx in range(start_frame, end_frame): ret, frame = cap.read() if not ret: break out.write(frame) out.release() # Only add if file was created successfully if os.path.exists(segment_path) and os.path.getsize(segment_path) > 0: segment_paths.append(segment_path) cap.release() return segment_paths except Exception as e: print(f"❌ Error splitting video: {e}") import traceback traceback.print_exc() return [] def extract_frames(video_path, num_frames=8): """Extract frames from video""" try: cap = cv2.VideoCapture(video_path) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) if total_frames == 0: cap.release() return [Image.new('RGB', (224, 224), (0, 0, 0)) for _ in range(num_frames)] if total_frames <= num_frames: indices = list(range(total_frames)) + [total_frames-1] * (num_frames - total_frames) else: start = total_frames // 6 end = 5 * total_frames // 6 indices = np.linspace(start, end, num_frames, dtype=int) frames = [] for idx in indices: cap.set(cv2.CAP_PROP_POS_FRAMES, int(idx)) ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = cv2.resize(frame, (224, 224)) frames.append(Image.fromarray(frame)) else: frames.append(Image.new('RGB', (224, 224), (0, 0, 0))) cap.release() return frames except Exception as e: return [Image.new('RGB', (224, 224), (0, 0, 0)) for _ in range(num_frames)] def predict_single_sign(video_path): """Predict sign from a single video""" try: frames = extract_frames(video_path) video_inputs = processor.video_processor([frames], return_tensors="pt") text_inputs = processor(text=["a person performing sign language"], return_tensors="pt") pixel_values = video_inputs['pixel_values'].to(device) input_ids = text_inputs['input_ids'].to(device) attention_mask = text_inputs['attention_mask'].to(device) with torch.no_grad(): outputs = xclip_model( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values, return_dict=True ) video_embeds = outputs.video_embeds logits = model(video_embeds) probs = torch.softmax(logits, dim=1) confidence, pred_class = torch.max(probs, 1) predicted_label = id_to_label[pred_class.item()] return predicted_label # Only return the label except Exception as e: print(f"❌ Prediction error: {e}") return "Unknown" def analyze_joined_video(video_path, num_signs, use_auto_detect): """ NEW MAIN FUNCTION: Analyze a JOINED video with multiple signs Args: video_path: Path to the joined video from CapCut num_signs: How many signs are in the video (used as hint) use_auto_detect: Whether to use automatic motion detection Returns: Complete sentence, individual predictions, detailed results """ try: if video_path is None: return "Please upload a video.", "", [] if num_signs is None or num_signs <= 0: num_signs = 3 # Default # STEP 1: Split the joined video into segments if use_auto_detect: print(f"🤖 Using AUTOMATIC motion detection (expected ~{num_signs} signs)...") segment_paths = split_video_smart(video_path, num_signs, use_motion_detection=True) else: print(f"📏 Using MANUAL equal split ({num_signs} segments)...") segment_paths = split_video_smart(video_path, num_signs, use_motion_detection=False) if len(segment_paths) == 0: return "Failed to split video. Please check your video file.", "", [] actual_segments = len(segment_paths) print(f"✅ Created {actual_segments} segments") # STEP 2: Analyze each segment separately predictions = [] detailed_results = [] for i, segment_path in enumerate(segment_paths, 1): print(f"🔍 Analyzing segment {i}/{actual_segments}...") sign = predict_single_sign(segment_path) predictions.append(sign) detailed_results.append({ 'video_num': i, 'sign': sign }) # STEP 3: Build sentence sentence = " ".join(predictions) # Format detailed results details_md = "### Individual Sign Analysis (In Order)\n\n" for result in detailed_results: details_md += f"**Position {result['video_num']}:** {result['sign']}\n\n" # Determine split method used split_method = "Automatic Motion Detection" if use_auto_detect else "Equal Time Segments" segments_info = f"Detected {actual_segments} segments" if use_auto_detect else f"Split into {num_signs} equal segments" # Final output final_result = f""" ## Complete Sentence Translation ### Detected Sentence: **"{sentence}"** {details_md} --- **Split Method:** {split_method} **Segments:** {segments_info} **Model:** X-CLIP Fine-tuned on Ugandan Sign Language *{'Signs were automatically detected by analyzing motion patterns' if use_auto_detect else 'Each sign was analyzed from equal time segments'}* """ # Clean up temporary files try: for segment_path in segment_paths: if os.path.exists(segment_path): os.remove(segment_path) except: pass return final_result, sentence, detailed_results except Exception as e: import traceback error_details = traceback.format_exc() print(f"❌ Error: {error_details}") return f"**Error analyzing video:** {str(e)}\n\nPlease try:\n- Using a different video\n- Toggling automatic detection\n- Adjusting number of signs", "", [] # ============================================================================ # FEEDBACK SYSTEM # ============================================================================ FEEDBACK_FILE = "user_feedback.csv" if not os.path.exists(FEEDBACK_FILE): pd.DataFrame(columns=['timestamp', 'predicted_sentence', 'correct_sentence', 'num_videos']).to_csv(FEEDBACK_FILE, index=False) def save_sentence_feedback(predicted_sentence, correct_sentence, num_videos): """Save user feedback for sentence""" try: feedback_data = { 'timestamp': datetime.now().isoformat(), 'predicted_sentence': predicted_sentence, 'correct_sentence': correct_sentence, 'num_videos': num_videos } df = pd.read_csv(FEEDBACK_FILE) df = pd.concat([df, pd.DataFrame([feedback_data])], ignore_index=True) df.to_csv(FEEDBACK_FILE, index=False) return "✅ Thank you! Your feedback helps improve the model." except Exception as e: return f"❌ Error saving feedback: {str(e)}" # ============================================================================ # GRADIO INTERFACE - MULTI-VIDEO SENTENCE BUILDER # ============================================================================ custom_css = """ .gradio-container { background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%); font-family: 'Arial', sans-serif; max-width: 1200px !important; margin: 0 auto !important; } h1 { color: #ff6b35 !important; text-align: center; margin-bottom: 10px !important; } .primary { background: #ff6b35 !important; border: none !important; color: white !important; font-weight: bold !important; } .primary:hover { background: #e55a2b !important; } .secondary { background: #444444 !important; border: 1px solid #ff6b35 !important; color: white !important; } """ with gr.Blocks(css=custom_css, title="Sign Language Sentence Builder") as demo: gr.Markdown(""" # 🤟 Ugandan Sign Language Sentence Analyzer *Upload ONE joined video with multiple signs - we'll automatically detect and translate them!* **Two Detection Modes:** 1. **🤖 Automatic (Recommended):** AI detects where each sign starts/ends (works with unequal durations!) 2. **📏 Manual:** Split video into equal time segments (use if signs have equal duration) """) with gr.Row(): # Left side - Video upload with gr.Column(scale=1): gr.Markdown("### 📤 Upload Your Joined Video") joined_video = gr.Video( label="Joined Video (from CapCut or any editor)", sources=["upload", "webcam"] ) gr.Markdown("### ⚙️ Detection Settings") auto_detect = gr.Checkbox( label="🤖 Use Automatic Motion Detection", value=True, info="AI automatically finds sign boundaries (recommended!)" ) num_signs_input = gr.Slider( minimum=1, maximum=10, value=3, step=1, label="Expected number of signs (approximate)", info="Helps guide the detection algorithm" ) with gr.Accordion("💡 How It Works", open=False): gr.Markdown(""" **Automatic Mode (🤖):** - Analyzes motion patterns in your video - Detects pauses/transitions between signs - Works even if signs have different durations! - Example: 1s + 3s + 2s signs → correctly detected **Manual Mode (📏):** - Splits video into equal time segments - Works best when all signs take equal time - Example: 2s + 2s + 2s signs → perfect split **Tips:** - ✅ Pause briefly between signs for best detection - ✅ Keep camera angle consistent - ✅ Good lighting helps accuracy """) with gr.Row(): analyze_btn = gr.Button("🚀 Analyze Sentence", variant="primary", scale=2) clear_btn = gr.Button("🗑️ Clear", variant="secondary", scale=1) # Right side - Results with gr.Column(scale=1): gr.Markdown("### 🎯 Translation Results") results_output = gr.Markdown( value="**Upload your video, choose detection mode, and click 'Analyze Sentence'**" ) gr.Markdown("### 💡 Feedback") gr.Markdown("*Help improve accuracy by providing corrections:*") correct_sentence_input = gr.Textbox( label="Correct Sentence (if prediction was wrong)", placeholder="e.g., Hello how are you" ) feedback_btn = gr.Button("📝 Submit Feedback", variant="secondary") feedback_output = gr.Markdown() # Hidden states current_sentence = gr.State() current_details = gr.State() # Analyze sentence logic analyze_btn.click( fn=analyze_joined_video, inputs=[joined_video, num_signs_input, auto_detect], outputs=[results_output, current_sentence, current_details] ) # Feedback logic def submit_feedback_wrapper(predicted, corrected, details): if not corrected or corrected.strip() == "": return "Please enter the correct sentence." num_videos = len(details) if details else 0 return save_sentence_feedback(predicted, corrected, num_videos) feedback_btn.click( fn=submit_feedback_wrapper, inputs=[current_sentence, correct_sentence_input, current_details], outputs=[feedback_output] ) # Clear button def clear_all(): return None, True, 3, "**Upload your video and click 'Analyze Sentence'.**", "", [], "" clear_btn.click( fn=clear_all, outputs=[joined_video, auto_detect, num_signs_input, results_output, current_sentence, current_details, feedback_output] ) # Example section gr.Markdown(""" --- ### 📝 Complete Example Workflow **Goal:** Translate "Hello how good" in sign language **Step 1: Record Your Signs** - Sign 1: "Hello" (performer holds sign for 2 seconds) - Sign 2: "How" (performer holds sign for 1 second) - Sign 3: "Good" (performer holds sign for 3 seconds) **Step 2: Join in CapCut** - Import all 3 videos - Arrange in order: Hello → How → Good - Export as ONE video (6 seconds total) **Step 3: Upload & Analyze** - Upload the 6-second video here - Enable "Automatic Detection" ✅ - Set "Expected signs" to 3 - Click "Analyze Sentence" **Step 4: Result** - 🤖 AI detects 3 segments automatically: - Position 1: "Hello" - Position 2: "How" - Position 3: "Good" - **Final Sentence:** "Hello How Good" ✅ --- ### 🆚 When to Use Each Mode | Scenario | Recommended Mode | Why | |----------|-----------------|-----| | Signs have different lengths | 🤖 Automatic | Detects boundaries precisely | | You pause between signs | 🤖 Automatic | Pauses help detection | | All signs exactly same duration | 📏 Manual | Simple equal split works | | Fast, continuous signing | 📏 Manual | Motion detection may struggle | | Professional recording | 🤖 Automatic | Better accuracy | | Quick test/prototype | 📏 Manual | Faster processing | """) # Launch if __name__ == "__main__": demo.launch(share=True)