Spaces:
Sleeping
Sleeping
Update modules/v2/vc_wrapper.py
Browse files- modules/v2/vc_wrapper.py +664 -606
modules/v2/vc_wrapper.py
CHANGED
|
@@ -1,606 +1,664 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
self.
|
| 37 |
-
self.
|
| 38 |
-
self.
|
| 39 |
-
self.
|
| 40 |
-
self.
|
| 41 |
-
self.
|
| 42 |
-
self.
|
| 43 |
-
self.
|
| 44 |
-
self.
|
| 45 |
-
self.
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
self.
|
| 49 |
-
self.
|
| 50 |
-
self.
|
| 51 |
-
self.
|
| 52 |
-
self.
|
| 53 |
-
self.compile_len = 87 * self.dit_max_context_len
|
| 54 |
-
|
| 55 |
-
def
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
return
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
#
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import librosa
|
| 3 |
+
import torchaudio
|
| 4 |
+
import numpy as np
|
| 5 |
+
from pydub import AudioSegment
|
| 6 |
+
from hf_utils import load_custom_model_from_hf
|
| 7 |
+
|
| 8 |
+
DEFAULT_REPO_ID = "Plachta/Seed-VC"
|
| 9 |
+
DEFAULT_CFM_CHECKPOINT = "v2/cfm_small.pth"
|
| 10 |
+
DEFAULT_AR_CHECKPOINT = "v2/ar_base.pth"
|
| 11 |
+
|
| 12 |
+
DEFAULT_CE_REPO_ID = "Plachta/ASTRAL-quantization"
|
| 13 |
+
DEFAULT_CE_NARROW_CHECKPOINT = "bsq32/bsq32_light.pth"
|
| 14 |
+
DEFAULT_CE_WIDE_CHECKPOINT = "bsq2048/bsq2048_light.pth"
|
| 15 |
+
|
| 16 |
+
DEFAULT_SE_REPO_ID = "funasr/campplus"
|
| 17 |
+
DEFAULT_SE_CHECKPOINT = "campplus_cn_common.bin"
|
| 18 |
+
|
| 19 |
+
class VoiceConversionWrapper(torch.nn.Module):
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
sr: int,
|
| 23 |
+
hop_size: int,
|
| 24 |
+
mel_fn: callable,
|
| 25 |
+
cfm: torch.nn.Module,
|
| 26 |
+
cfm_length_regulator: torch.nn.Module,
|
| 27 |
+
content_extractor_narrow: torch.nn.Module,
|
| 28 |
+
content_extractor_wide: torch.nn.Module,
|
| 29 |
+
ar_length_regulator: torch.nn.Module,
|
| 30 |
+
ar: torch.nn.Module,
|
| 31 |
+
style_encoder: torch.nn.Module,
|
| 32 |
+
vocoder: torch.nn.Module,
|
| 33 |
+
):
|
| 34 |
+
super(VoiceConversionWrapper, self).__init__()
|
| 35 |
+
self.sr = sr
|
| 36 |
+
self.hop_size = hop_size
|
| 37 |
+
self.mel_fn = mel_fn
|
| 38 |
+
self.cfm = cfm
|
| 39 |
+
self.cfm_length_regulator = cfm_length_regulator
|
| 40 |
+
self.content_extractor_narrow = content_extractor_narrow
|
| 41 |
+
self.content_extractor_wide = content_extractor_wide
|
| 42 |
+
self.vocoder = vocoder
|
| 43 |
+
self.ar_length_regulator = ar_length_regulator
|
| 44 |
+
self.ar = ar
|
| 45 |
+
self.style_encoder = style_encoder
|
| 46 |
+
# Set streaming parameters
|
| 47 |
+
self.overlap_frame_len = 16
|
| 48 |
+
self.bitrate = "320k"
|
| 49 |
+
self.compiled_decode_fn = None
|
| 50 |
+
self.dit_compiled = False
|
| 51 |
+
self.dit_max_context_len = 30 # in seconds
|
| 52 |
+
self.ar_max_content_len = 1500 # in num of narrow tokens
|
| 53 |
+
self.compile_len = 87 * self.dit_max_context_len
|
| 54 |
+
|
| 55 |
+
def forward_cfm(self, content_indices_wide, content_lens, mels, mel_lens, style_vectors):
|
| 56 |
+
device = content_indices_wide.device
|
| 57 |
+
B = content_indices_wide.size(0)
|
| 58 |
+
cond, _ = self.cfm_length_regulator(content_indices_wide, ylens=mel_lens)
|
| 59 |
+
|
| 60 |
+
# randomly set a length as prompt
|
| 61 |
+
prompt_len_max = mel_lens - 1
|
| 62 |
+
prompt_len = (torch.rand([B], device=device) * prompt_len_max).floor().to(dtype=torch.long)
|
| 63 |
+
prompt_len[torch.rand([B], device=device) < 0.1] = 0
|
| 64 |
+
|
| 65 |
+
loss = self.cfm(mels, mel_lens, prompt_len, cond, style_vectors)
|
| 66 |
+
return loss
|
| 67 |
+
|
| 68 |
+
def forward_ar(self, content_indices_narrow, content_indices_wide, content_lens):
|
| 69 |
+
device = content_indices_narrow.device
|
| 70 |
+
duration_reduced_narrow_tokens = []
|
| 71 |
+
duration_reduced_narrow_lens = []
|
| 72 |
+
for bib in range(content_indices_narrow.size(0)):
|
| 73 |
+
reduced, reduced_len = self.duration_reduction_func(content_indices_narrow[bib])
|
| 74 |
+
duration_reduced_narrow_tokens.append(reduced)
|
| 75 |
+
duration_reduced_narrow_lens.append(reduced_len)
|
| 76 |
+
duration_reduced_narrow_tokens = torch.nn.utils.rnn.pad_sequence(duration_reduced_narrow_tokens,
|
| 77 |
+
batch_first=True, padding_value=0).to(device)
|
| 78 |
+
duration_reduced_narrow_lens = torch.LongTensor(duration_reduced_narrow_lens).to(device)
|
| 79 |
+
|
| 80 |
+
# interpolate speech token to match acoustic feature length
|
| 81 |
+
cond, _ = self.ar_length_regulator(duration_reduced_narrow_tokens)
|
| 82 |
+
loss = self.ar(cond, duration_reduced_narrow_lens, content_indices_wide, content_lens)
|
| 83 |
+
return loss
|
| 84 |
+
|
| 85 |
+
def forward(self, waves_16k, mels, wave_lens_16k, mel_lens, forward_ar=False, forward_cfm=True):
|
| 86 |
+
"""
|
| 87 |
+
Forward pass for the model.
|
| 88 |
+
"""
|
| 89 |
+
# extract wide content features as both AR and CFM models use them
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
_, content_indices_wide, content_lens = self.content_extractor_wide(waves_16k, wave_lens_16k)
|
| 92 |
+
if forward_ar:
|
| 93 |
+
# extract narrow content features for AR model
|
| 94 |
+
_, content_indices_narrow, _ = self.content_extractor_narrow(waves_16k, wave_lens_16k, ssl_model=self.content_extractor_wide.ssl_model)
|
| 95 |
+
loss_ar = self.forward_ar(content_indices_narrow.clone(), content_indices_wide.clone(), content_lens)
|
| 96 |
+
else:
|
| 97 |
+
loss_ar = torch.tensor(0.0, device=waves_16k.device, dtype=waves_16k.dtype)
|
| 98 |
+
if forward_cfm:
|
| 99 |
+
style_vectors = self.compute_style(waves_16k, wave_lens_16k)
|
| 100 |
+
loss_cfm = self.forward_cfm(content_indices_wide, content_lens, mels, mel_lens, style_vectors)
|
| 101 |
+
else:
|
| 102 |
+
loss_cfm = torch.tensor(0.0, device=waves_16k.device, dtype=waves_16k.dtype)
|
| 103 |
+
return loss_ar, loss_cfm
|
| 104 |
+
|
| 105 |
+
def compile_ar(self):
|
| 106 |
+
"""
|
| 107 |
+
Compile the AR model for inference.
|
| 108 |
+
"""
|
| 109 |
+
self.compiled_decode_fn = torch.compile(
|
| 110 |
+
self.ar.model.forward_generate,
|
| 111 |
+
fullgraph=True,
|
| 112 |
+
backend="inductor" if torch.cuda.is_available() else "aot_eager",
|
| 113 |
+
mode="reduce-overhead" if torch.cuda.is_available() else None,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def compile_cfm(self):
|
| 117 |
+
self.cfm.estimator.transformer = torch.compile(
|
| 118 |
+
self.cfm.estimator.transformer,
|
| 119 |
+
fullgraph=True,
|
| 120 |
+
backend="inductor" if torch.cuda.is_available() else "aot_eager",
|
| 121 |
+
mode="reduce-overhead" if torch.cuda.is_available() else None,
|
| 122 |
+
)
|
| 123 |
+
self.dit_compiled = True
|
| 124 |
+
|
| 125 |
+
@staticmethod
|
| 126 |
+
def strip_prefix(state_dict: dict, prefix: str = "module.") -> dict:
|
| 127 |
+
"""
|
| 128 |
+
Strip the prefix from the state_dict keys.
|
| 129 |
+
"""
|
| 130 |
+
new_state_dict = {}
|
| 131 |
+
for k, v in state_dict.items():
|
| 132 |
+
if k.startswith(prefix):
|
| 133 |
+
new_key = k[len(prefix):]
|
| 134 |
+
else:
|
| 135 |
+
new_key = k
|
| 136 |
+
new_state_dict[new_key] = v
|
| 137 |
+
return new_state_dict
|
| 138 |
+
|
| 139 |
+
@staticmethod
|
| 140 |
+
def duration_reduction_func(token_seq, n_gram=1):
|
| 141 |
+
"""
|
| 142 |
+
Args:
|
| 143 |
+
token_seq: (T,)
|
| 144 |
+
Returns:
|
| 145 |
+
reduced_token_seq: (T')
|
| 146 |
+
reduced_token_seq_len: T'
|
| 147 |
+
"""
|
| 148 |
+
n_gram_seq = token_seq.unfold(0, n_gram, 1)
|
| 149 |
+
mask = torch.all(n_gram_seq[1:] != n_gram_seq[:-1], dim=1)
|
| 150 |
+
reduced_token_seq = torch.cat(
|
| 151 |
+
(n_gram_seq[0, :n_gram], n_gram_seq[1:, -1][mask])
|
| 152 |
+
)
|
| 153 |
+
return reduced_token_seq, len(reduced_token_seq)
|
| 154 |
+
|
| 155 |
+
@staticmethod
|
| 156 |
+
def crossfade(chunk1, chunk2, overlap):
|
| 157 |
+
"""Apply crossfade between two audio chunks."""
|
| 158 |
+
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
|
| 159 |
+
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
|
| 160 |
+
if len(chunk2) < overlap:
|
| 161 |
+
chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)]
|
| 162 |
+
else:
|
| 163 |
+
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
|
| 164 |
+
return chunk2
|
| 165 |
+
|
| 166 |
+
def _stream_wave_chunks(self, vc_wave, processed_frames, vc_mel, overlap_wave_len,
|
| 167 |
+
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output):
|
| 168 |
+
"""
|
| 169 |
+
Helper method to handle streaming wave chunks.
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
vc_wave: The current wave chunk
|
| 173 |
+
processed_frames: Number of frames processed so far
|
| 174 |
+
vc_mel: The mel spectrogram
|
| 175 |
+
overlap_wave_len: Length of overlap between chunks
|
| 176 |
+
generated_wave_chunks: List of generated wave chunks
|
| 177 |
+
previous_chunk: Previous wave chunk for crossfading
|
| 178 |
+
is_last_chunk: Whether this is the last chunk
|
| 179 |
+
stream_output: Whether to stream the output
|
| 180 |
+
|
| 181 |
+
Returns:
|
| 182 |
+
Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio)
|
| 183 |
+
where should_break indicates if processing should stop
|
| 184 |
+
mp3_bytes is the MP3 bytes if streaming, None otherwise
|
| 185 |
+
full_audio is the full audio if this is the last chunk, None otherwise
|
| 186 |
+
"""
|
| 187 |
+
mp3_bytes = None
|
| 188 |
+
full_audio = None
|
| 189 |
+
|
| 190 |
+
if processed_frames == 0:
|
| 191 |
+
if is_last_chunk:
|
| 192 |
+
output_wave = vc_wave[0].cpu().numpy()
|
| 193 |
+
generated_wave_chunks.append(output_wave)
|
| 194 |
+
|
| 195 |
+
if stream_output:
|
| 196 |
+
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
|
| 197 |
+
mp3_bytes = AudioSegment(
|
| 198 |
+
output_wave_int16.tobytes(), frame_rate=self.sr,
|
| 199 |
+
sample_width=output_wave_int16.dtype.itemsize, channels=1
|
| 200 |
+
).export(format="mp3", bitrate=self.bitrate).read()
|
| 201 |
+
full_audio = (self.sr, np.concatenate(generated_wave_chunks))
|
| 202 |
+
else:
|
| 203 |
+
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)
|
| 204 |
+
|
| 205 |
+
return processed_frames, previous_chunk, True, mp3_bytes, full_audio
|
| 206 |
+
|
| 207 |
+
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
|
| 208 |
+
generated_wave_chunks.append(output_wave)
|
| 209 |
+
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
| 210 |
+
processed_frames += vc_mel.size(2) - self.overlap_frame_len
|
| 211 |
+
|
| 212 |
+
if stream_output:
|
| 213 |
+
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
|
| 214 |
+
mp3_bytes = AudioSegment(
|
| 215 |
+
output_wave_int16.tobytes(), frame_rate=self.sr,
|
| 216 |
+
sample_width=output_wave_int16.dtype.itemsize, channels=1
|
| 217 |
+
).export(format="mp3", bitrate=self.bitrate).read()
|
| 218 |
+
|
| 219 |
+
elif is_last_chunk:
|
| 220 |
+
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
|
| 221 |
+
generated_wave_chunks.append(output_wave)
|
| 222 |
+
processed_frames += vc_mel.size(2) - self.overlap_frame_len
|
| 223 |
+
|
| 224 |
+
if stream_output:
|
| 225 |
+
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
|
| 226 |
+
mp3_bytes = AudioSegment(
|
| 227 |
+
output_wave_int16.tobytes(), frame_rate=self.sr,
|
| 228 |
+
sample_width=output_wave_int16.dtype.itemsize, channels=1
|
| 229 |
+
).export(format="mp3", bitrate=self.bitrate).read()
|
| 230 |
+
full_audio = (self.sr, np.concatenate(generated_wave_chunks))
|
| 231 |
+
else:
|
| 232 |
+
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)
|
| 233 |
+
|
| 234 |
+
return processed_frames, previous_chunk, True, mp3_bytes, full_audio
|
| 235 |
+
|
| 236 |
+
else:
|
| 237 |
+
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
|
| 238 |
+
generated_wave_chunks.append(output_wave)
|
| 239 |
+
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
| 240 |
+
processed_frames += vc_mel.size(2) - self.overlap_frame_len
|
| 241 |
+
|
| 242 |
+
if stream_output:
|
| 243 |
+
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
|
| 244 |
+
mp3_bytes = AudioSegment(
|
| 245 |
+
output_wave_int16.tobytes(), frame_rate=self.sr,
|
| 246 |
+
sample_width=output_wave_int16.dtype.itemsize, channels=1
|
| 247 |
+
).export(format="mp3", bitrate=self.bitrate).read()
|
| 248 |
+
|
| 249 |
+
return processed_frames, previous_chunk, False, mp3_bytes, full_audio
|
| 250 |
+
|
| 251 |
+
def load_checkpoints(
|
| 252 |
+
self,
|
| 253 |
+
cfm_checkpoint_path = None,
|
| 254 |
+
ar_checkpoint_path = None,
|
| 255 |
+
):
|
| 256 |
+
if cfm_checkpoint_path is None:
|
| 257 |
+
cfm_checkpoint_path = load_custom_model_from_hf(
|
| 258 |
+
repo_id=DEFAULT_REPO_ID,
|
| 259 |
+
model_filename=DEFAULT_CFM_CHECKPOINT,
|
| 260 |
+
)
|
| 261 |
+
else:
|
| 262 |
+
print(f"Loading CFM checkpoint from {cfm_checkpoint_path}...")
|
| 263 |
+
if ar_checkpoint_path is None:
|
| 264 |
+
ar_checkpoint_path = load_custom_model_from_hf(
|
| 265 |
+
repo_id=DEFAULT_REPO_ID,
|
| 266 |
+
model_filename=DEFAULT_AR_CHECKPOINT,
|
| 267 |
+
)
|
| 268 |
+
else:
|
| 269 |
+
print(f"Loading AR checkpoint from {ar_checkpoint_path}...")
|
| 270 |
+
# cfm
|
| 271 |
+
cfm_checkpoint = torch.load(cfm_checkpoint_path, map_location="cpu")
|
| 272 |
+
cfm_length_regulator_state_dict = self.strip_prefix(cfm_checkpoint["net"]['length_regulator'], "module.")
|
| 273 |
+
cfm_state_dict = self.strip_prefix(cfm_checkpoint["net"]['cfm'], "module.")
|
| 274 |
+
missing_keys, unexpected_keys = self.cfm.load_state_dict(cfm_state_dict, strict=False)
|
| 275 |
+
missing_keys, unexpected_keys = self.cfm_length_regulator.load_state_dict(cfm_length_regulator_state_dict, strict=False)
|
| 276 |
+
|
| 277 |
+
# ar
|
| 278 |
+
ar_checkpoint = torch.load(ar_checkpoint_path, map_location="cpu")
|
| 279 |
+
ar_length_regulator_state_dict = self.strip_prefix(ar_checkpoint["net"]['length_regulator'], "module.")
|
| 280 |
+
ar_state_dict = self.strip_prefix(ar_checkpoint["net"]['ar'], "module.")
|
| 281 |
+
missing_keys, unexpected_keys = self.ar.load_state_dict(ar_state_dict, strict=False)
|
| 282 |
+
missing_keys, unexpected_keys = self.ar_length_regulator.load_state_dict(ar_length_regulator_state_dict, strict=False)
|
| 283 |
+
|
| 284 |
+
# content extractor
|
| 285 |
+
content_extractor_narrow_checkpoint_path = load_custom_model_from_hf(
|
| 286 |
+
repo_id=DEFAULT_CE_REPO_ID,
|
| 287 |
+
model_filename=DEFAULT_CE_NARROW_CHECKPOINT,
|
| 288 |
+
)
|
| 289 |
+
content_extractor_narrow_checkpoint = torch.load(content_extractor_narrow_checkpoint_path, map_location="cpu")
|
| 290 |
+
self.content_extractor_narrow.load_state_dict(
|
| 291 |
+
content_extractor_narrow_checkpoint, strict=False
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
content_extractor_wide_checkpoint_path = load_custom_model_from_hf(
|
| 295 |
+
repo_id=DEFAULT_CE_REPO_ID,
|
| 296 |
+
model_filename=DEFAULT_CE_WIDE_CHECKPOINT,
|
| 297 |
+
)
|
| 298 |
+
content_extractor_wide_checkpoint = torch.load(content_extractor_wide_checkpoint_path, map_location="cpu")
|
| 299 |
+
self.content_extractor_wide.load_state_dict(
|
| 300 |
+
content_extractor_wide_checkpoint, strict=False
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# style encoder
|
| 304 |
+
style_encoder_checkpoint_path = load_custom_model_from_hf(DEFAULT_SE_REPO_ID, DEFAULT_SE_CHECKPOINT, config_filename=None)
|
| 305 |
+
style_encoder_checkpoint = torch.load(style_encoder_checkpoint_path, map_location="cpu")
|
| 306 |
+
self.style_encoder.load_state_dict(style_encoder_checkpoint, strict=False)
|
| 307 |
+
|
| 308 |
+
def setup_ar_caches(self, max_batch_size=1, max_seq_len=4096, dtype=torch.float32, device=torch.device("cpu")):
|
| 309 |
+
self.ar.setup_caches(max_batch_size=max_batch_size, max_seq_len=max_seq_len, dtype=dtype, device=device)
|
| 310 |
+
|
| 311 |
+
@torch.no_grad()
|
| 312 |
+
def compute_style(self, waves_16k: torch.Tensor, wave_lens_16k: torch.Tensor = None):
|
| 313 |
+
if wave_lens_16k is None:
|
| 314 |
+
wave_lens_16k = torch.tensor([waves_16k.size(-1)], dtype=torch.int32).to(waves_16k.device)
|
| 315 |
+
feat_list = []
|
| 316 |
+
for bib in range(waves_16k.size(0)):
|
| 317 |
+
feat = torchaudio.compliance.kaldi.fbank(waves_16k[bib:bib + 1, :wave_lens_16k[bib]],
|
| 318 |
+
num_mel_bins=80,
|
| 319 |
+
dither=0,
|
| 320 |
+
sample_frequency=16000)
|
| 321 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
| 322 |
+
feat_list.append(feat)
|
| 323 |
+
max_feat_len = max([feat.size(0) for feat in feat_list])
|
| 324 |
+
feat_lens = torch.tensor([feat.size(0) for feat in feat_list], dtype=torch.int32).to(waves_16k.device) // 2
|
| 325 |
+
feat_list = [
|
| 326 |
+
torch.nn.functional.pad(feat, (0, 0, 0, max_feat_len - feat.size(0)), value=float(feat.min().item()))
|
| 327 |
+
for feat in feat_list
|
| 328 |
+
]
|
| 329 |
+
feat = torch.stack(feat_list, dim=0)
|
| 330 |
+
style = self.style_encoder(feat, feat_lens)
|
| 331 |
+
return style
|
| 332 |
+
|
| 333 |
+
@torch.no_grad()
|
| 334 |
+
@torch.inference_mode()
|
| 335 |
+
def convert_timbre(
|
| 336 |
+
self,
|
| 337 |
+
source_audio_path: str,
|
| 338 |
+
target_audio_path: str,
|
| 339 |
+
diffusion_steps: int = 30,
|
| 340 |
+
length_adjust: float = 1.0,
|
| 341 |
+
inference_cfg_rate: float = 0.5,
|
| 342 |
+
use_sway_sampling: bool = False,
|
| 343 |
+
use_amo_sampling: bool = False,
|
| 344 |
+
device: torch.device = torch.device("cpu"),
|
| 345 |
+
dtype: torch.dtype = torch.float32,
|
| 346 |
+
):
|
| 347 |
+
source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
|
| 348 |
+
target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
|
| 349 |
+
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device)
|
| 350 |
+
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device)
|
| 351 |
+
|
| 352 |
+
# get 16khz audio
|
| 353 |
+
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
|
| 354 |
+
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
|
| 355 |
+
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
|
| 356 |
+
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)
|
| 357 |
+
|
| 358 |
+
# compute mel spectrogram
|
| 359 |
+
source_mel = self.mel_fn(source_wave_tensor)
|
| 360 |
+
target_mel = self.mel_fn(target_wave_tensor)
|
| 361 |
+
source_mel_len = source_mel.size(2)
|
| 362 |
+
target_mel_len = target_mel.size(2)
|
| 363 |
+
|
| 364 |
+
with torch.autocast(device_type=device.type, dtype=dtype):
|
| 365 |
+
# compute content features
|
| 366 |
+
_, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size])
|
| 367 |
+
_, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size])
|
| 368 |
+
|
| 369 |
+
# compute style features
|
| 370 |
+
target_style = self.compute_style(target_wave_16k_tensor)
|
| 371 |
+
|
| 372 |
+
# Length regulation
|
| 373 |
+
cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device))
|
| 374 |
+
prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device))
|
| 375 |
+
|
| 376 |
+
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
| 377 |
+
# generate mel spectrogram
|
| 378 |
+
vc_mel = self.cfm.inference(
|
| 379 |
+
cat_condition,
|
| 380 |
+
torch.LongTensor([cat_condition.size(1)]).to(device),
|
| 381 |
+
target_mel, target_style, diffusion_steps,
|
| 382 |
+
inference_cfg_rate=inference_cfg_rate,
|
| 383 |
+
sway_sampling=use_sway_sampling,
|
| 384 |
+
amo_sampling=use_amo_sampling,
|
| 385 |
+
)
|
| 386 |
+
vc_mel = vc_mel[:, :, target_mel_len:]
|
| 387 |
+
vc_wave = self.vocoder(vc_mel.float()).squeeze()[None]
|
| 388 |
+
return vc_wave.cpu().numpy()
|
| 389 |
+
|
| 390 |
+
@torch.no_grad()
|
| 391 |
+
@torch.inference_mode()
|
| 392 |
+
def convert_voice(
|
| 393 |
+
self,
|
| 394 |
+
source_audio_path: str,
|
| 395 |
+
target_audio_path: str,
|
| 396 |
+
diffusion_steps: int = 30,
|
| 397 |
+
length_adjust: float = 1.0,
|
| 398 |
+
inference_cfg_rate: float = 0.5,
|
| 399 |
+
top_p: float = 0.7,
|
| 400 |
+
temperature: float = 0.7,
|
| 401 |
+
repetition_penalty: float = 1.5,
|
| 402 |
+
use_sway_sampling: bool = False,
|
| 403 |
+
use_amo_sampling: bool = False,
|
| 404 |
+
device: torch.device = torch.device("cpu"),
|
| 405 |
+
dtype: torch.dtype = torch.float32,
|
| 406 |
+
):
|
| 407 |
+
source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
|
| 408 |
+
target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
|
| 409 |
+
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device)
|
| 410 |
+
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device)
|
| 411 |
+
|
| 412 |
+
# get 16khz audio
|
| 413 |
+
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
|
| 414 |
+
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
|
| 415 |
+
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
|
| 416 |
+
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)
|
| 417 |
+
|
| 418 |
+
# compute mel spectrogram
|
| 419 |
+
source_mel = self.mel_fn(source_wave_tensor)
|
| 420 |
+
target_mel = self.mel_fn(target_wave_tensor)
|
| 421 |
+
source_mel_len = source_mel.size(2)
|
| 422 |
+
target_mel_len = target_mel.size(2)
|
| 423 |
+
|
| 424 |
+
with torch.autocast(device_type=device.type, dtype=dtype):
|
| 425 |
+
# compute content features
|
| 426 |
+
_, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size])
|
| 427 |
+
_, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size])
|
| 428 |
+
|
| 429 |
+
_, source_narrow_indices, _ = self.content_extractor_narrow(source_wave_16k_tensor,
|
| 430 |
+
[source_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model)
|
| 431 |
+
_, target_narrow_indices, _ = self.content_extractor_narrow(target_wave_16k_tensor,
|
| 432 |
+
[target_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model)
|
| 433 |
+
|
| 434 |
+
src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1)
|
| 435 |
+
tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1)
|
| 436 |
+
|
| 437 |
+
ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, src_narrow_reduced], dim=0)[None])[0]
|
| 438 |
+
|
| 439 |
+
ar_out = self.ar.generate(ar_cond, target_content_indices, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty)
|
| 440 |
+
ar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(-1) * ar_out.size(-1) * length_adjust)]).to(device)
|
| 441 |
+
# compute style features
|
| 442 |
+
target_style = self.compute_style(target_wave_16k_tensor)
|
| 443 |
+
|
| 444 |
+
# Length regulation
|
| 445 |
+
cond, _ = self.cfm_length_regulator(ar_out, ylens=torch.LongTensor([ar_out_mel_len]).to(device))
|
| 446 |
+
prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device))
|
| 447 |
+
|
| 448 |
+
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
| 449 |
+
# generate mel spectrogram
|
| 450 |
+
vc_mel = self.cfm.inference(
|
| 451 |
+
cat_condition,
|
| 452 |
+
torch.LongTensor([cat_condition.size(1)]).to(device),
|
| 453 |
+
target_mel, target_style, diffusion_steps,
|
| 454 |
+
inference_cfg_rate=inference_cfg_rate,
|
| 455 |
+
sway_sampling=use_sway_sampling,
|
| 456 |
+
amo_sampling=use_amo_sampling,
|
| 457 |
+
)
|
| 458 |
+
vc_mel = vc_mel[:, :, target_mel_len:]
|
| 459 |
+
vc_wave = self.vocoder(vc_mel.float()).squeeze()[None]
|
| 460 |
+
return vc_wave.cpu().numpy()
|
| 461 |
+
|
| 462 |
+
def _process_content_features(self, audio_16k_tensor, is_narrow=False):
|
| 463 |
+
"""Process audio through Whisper model to extract features."""
|
| 464 |
+
content_extractor_fn = self.content_extractor_narrow if is_narrow else self.content_extractor_wide
|
| 465 |
+
if audio_16k_tensor.size(-1) <= 16000 * 30:
|
| 466 |
+
# Compute content features
|
| 467 |
+
_, content_indices, _ = content_extractor_fn(audio_16k_tensor, [audio_16k_tensor.size(-1)], ssl_model=self.content_extractor_wide.ssl_model)
|
| 468 |
+
else:
|
| 469 |
+
# Process long audio in chunks
|
| 470 |
+
overlapping_time = 5 # 5 seconds
|
| 471 |
+
features_list = []
|
| 472 |
+
buffer = None
|
| 473 |
+
traversed_time = 0
|
| 474 |
+
while traversed_time < audio_16k_tensor.size(-1):
|
| 475 |
+
if buffer is None: # first chunk
|
| 476 |
+
chunk = audio_16k_tensor[:, traversed_time:traversed_time + 16000 * 30]
|
| 477 |
+
else:
|
| 478 |
+
chunk = torch.cat([
|
| 479 |
+
buffer,
|
| 480 |
+
audio_16k_tensor[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]
|
| 481 |
+
], dim=-1)
|
| 482 |
+
_, chunk_content_indices, _ = content_extractor_fn(chunk, [chunk.size(-1)], ssl_model=self.content_extractor_wide.ssl_model)
|
| 483 |
+
if traversed_time == 0:
|
| 484 |
+
features_list.append(chunk_content_indices)
|
| 485 |
+
else:
|
| 486 |
+
features_list.append(chunk_content_indices[:, 50 * overlapping_time:])
|
| 487 |
+
buffer = chunk[:, -16000 * overlapping_time:]
|
| 488 |
+
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
|
| 489 |
+
content_indices = torch.cat(features_list, dim=1)
|
| 490 |
+
|
| 491 |
+
return content_indices
|
| 492 |
+
|
| 493 |
+
@torch.no_grad()
|
| 494 |
+
@torch.inference_mode()
|
| 495 |
+
def convert_voice_with_streaming(
|
| 496 |
+
self,
|
| 497 |
+
source_audio_path: str,
|
| 498 |
+
target_audio_path: str,
|
| 499 |
+
diffusion_steps: int = 30,
|
| 500 |
+
length_adjust: float = 1.0,
|
| 501 |
+
intelligebility_cfg_rate: float = 0.7,
|
| 502 |
+
similarity_cfg_rate: float = 0.7,
|
| 503 |
+
top_p: float = 0.7,
|
| 504 |
+
temperature: float = 0.7,
|
| 505 |
+
repetition_penalty: float = 1.5,
|
| 506 |
+
convert_style: bool = False,
|
| 507 |
+
anonymization_only: bool = False,
|
| 508 |
+
device: torch.device = torch.device("cuda"),
|
| 509 |
+
dtype: torch.dtype = torch.float16,
|
| 510 |
+
stream_output: bool = True,
|
| 511 |
+
):
|
| 512 |
+
"""
|
| 513 |
+
Convert voice with streaming support for long audio files.
|
| 514 |
+
|
| 515 |
+
Args:
|
| 516 |
+
source_audio_path: Path to source audio file
|
| 517 |
+
target_audio_path: Path to target audio file
|
| 518 |
+
diffusion_steps: Number of diffusion steps (default: 30)
|
| 519 |
+
length_adjust: Length adjustment factor (default: 1.0)
|
| 520 |
+
intelligebility_cfg_rate: CFG rate for intelligibility (default: 0.7)
|
| 521 |
+
similarity_cfg_rate: CFG rate for similarity (default: 0.7)
|
| 522 |
+
top_p: Top-p sampling parameter (default: 0.7)
|
| 523 |
+
temperature: Temperature for sampling (default: 0.7)
|
| 524 |
+
repetition_penalty: Repetition penalty (default: 1.5)
|
| 525 |
+
device: Device to use (default: cpu)
|
| 526 |
+
dtype: Data type to use (default: float32)
|
| 527 |
+
stream_output: Whether to stream the output (default: True)
|
| 528 |
+
|
| 529 |
+
Returns:
|
| 530 |
+
If stream_output is True, yields (mp3_bytes, full_audio) tuples
|
| 531 |
+
If stream_output is False, returns the full audio as a numpy array
|
| 532 |
+
"""
|
| 533 |
+
# Load audio
|
| 534 |
+
source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
|
| 535 |
+
target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
|
| 536 |
+
|
| 537 |
+
# Limit target audio to 25 seconds
|
| 538 |
+
target_wave = target_wave[:self.sr * (self.dit_max_context_len - 5)]
|
| 539 |
+
|
| 540 |
+
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).float().to(device)
|
| 541 |
+
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).float().to(device)
|
| 542 |
+
|
| 543 |
+
# Resample to 16kHz for feature extraction
|
| 544 |
+
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
|
| 545 |
+
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
|
| 546 |
+
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
|
| 547 |
+
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)
|
| 548 |
+
|
| 549 |
+
# Compute mel spectrograms
|
| 550 |
+
source_mel = self.mel_fn(source_wave_tensor)
|
| 551 |
+
target_mel = self.mel_fn(target_wave_tensor)
|
| 552 |
+
source_mel_len = source_mel.size(2)
|
| 553 |
+
target_mel_len = target_mel.size(2)
|
| 554 |
+
|
| 555 |
+
# Set up chunk processing parameters
|
| 556 |
+
max_context_window = self.sr // self.hop_size * self.dit_max_context_len
|
| 557 |
+
overlap_wave_len = self.overlap_frame_len * self.hop_size
|
| 558 |
+
|
| 559 |
+
with torch.autocast(device_type=device.type, dtype=dtype):
|
| 560 |
+
# Compute content features
|
| 561 |
+
source_content_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=False)
|
| 562 |
+
target_content_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=False)
|
| 563 |
+
# Compute style features
|
| 564 |
+
target_style = self.compute_style(target_wave_16k_tensor)
|
| 565 |
+
prompt_condition, _, = self.cfm_length_regulator(target_content_indices,
|
| 566 |
+
ylens=torch.LongTensor([target_mel_len]).to(device))
|
| 567 |
+
|
| 568 |
+
# prepare for streaming
|
| 569 |
+
generated_wave_chunks = []
|
| 570 |
+
processed_frames = 0
|
| 571 |
+
previous_chunk = None
|
| 572 |
+
if convert_style:
|
| 573 |
+
with torch.autocast(device_type=device.type, dtype=dtype):
|
| 574 |
+
source_narrow_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=True)
|
| 575 |
+
target_narrow_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=True)
|
| 576 |
+
src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1)
|
| 577 |
+
tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1)
|
| 578 |
+
# Process src_narrow_reduced in chunks of max 1000 tokens
|
| 579 |
+
max_chunk_size = self.ar_max_content_len - tgt_narrow_len
|
| 580 |
+
|
| 581 |
+
# Process src_narrow_reduced in chunks
|
| 582 |
+
for i in range(0, len(src_narrow_reduced), max_chunk_size):
|
| 583 |
+
is_last_chunk = i + max_chunk_size >= len(src_narrow_reduced)
|
| 584 |
+
with torch.autocast(device_type=device.type, dtype=dtype):
|
| 585 |
+
chunk = src_narrow_reduced[i:i + max_chunk_size]
|
| 586 |
+
if anonymization_only:
|
| 587 |
+
chunk_ar_cond = self.ar_length_regulator(chunk[None])[0]
|
| 588 |
+
chunk_ar_out = self.ar.generate(chunk_ar_cond, torch.zeros([1, 0]).long().to(device),
|
| 589 |
+
compiled_decode_fn=self.compiled_decode_fn,
|
| 590 |
+
top_p=top_p, temperature=temperature,
|
| 591 |
+
repetition_penalty=repetition_penalty)
|
| 592 |
+
else:
|
| 593 |
+
# For each chunk, we need to include tgt_narrow_reduced as context
|
| 594 |
+
chunk_ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, chunk], dim=0)[None])[0]
|
| 595 |
+
chunk_ar_out = self.ar.generate(chunk_ar_cond, target_content_indices, compiled_decode_fn=self.compiled_decode_fn,
|
| 596 |
+
top_p=top_p, temperature=temperature,
|
| 597 |
+
repetition_penalty=repetition_penalty)
|
| 598 |
+
chunkar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(
|
| 599 |
+
-1) * chunk_ar_out.size(-1) * length_adjust)]).to(device)
|
| 600 |
+
# Length regulation
|
| 601 |
+
chunk_cond, _ = self.cfm_length_regulator(chunk_ar_out, ylens=torch.LongTensor([chunkar_out_mel_len]).to(device))
|
| 602 |
+
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
|
| 603 |
+
original_len = cat_condition.size(1)
|
| 604 |
+
# pad cat_condition to compile_len
|
| 605 |
+
if self.dit_compiled:
|
| 606 |
+
cat_condition = torch.nn.functional.pad(cat_condition,
|
| 607 |
+
(0, 0, 0, self.compile_len - cat_condition.size(1),),
|
| 608 |
+
value=0)
|
| 609 |
+
# Voice Conversion
|
| 610 |
+
vc_mel = self.cfm.inference(
|
| 611 |
+
cat_condition,
|
| 612 |
+
torch.LongTensor([original_len]).to(device),
|
| 613 |
+
target_mel, target_style, diffusion_steps,
|
| 614 |
+
inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate],
|
| 615 |
+
random_voice=anonymization_only,
|
| 616 |
+
)
|
| 617 |
+
vc_mel = vc_mel[:, :, target_mel_len:original_len]
|
| 618 |
+
vc_wave = self.vocoder(vc_mel).squeeze()[None]
|
| 619 |
+
processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks(
|
| 620 |
+
vc_wave, processed_frames, vc_mel, overlap_wave_len,
|
| 621 |
+
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
if stream_output and mp3_bytes is not None:
|
| 625 |
+
yield mp3_bytes, full_audio
|
| 626 |
+
if should_break:
|
| 627 |
+
break
|
| 628 |
+
else:
|
| 629 |
+
cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device))
|
| 630 |
+
|
| 631 |
+
# Process in chunks for streaming
|
| 632 |
+
max_source_window = max_context_window - target_mel.size(2)
|
| 633 |
+
|
| 634 |
+
# Generate chunk by chunk and stream the output
|
| 635 |
+
while processed_frames < cond.size(1):
|
| 636 |
+
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
|
| 637 |
+
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
|
| 638 |
+
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
|
| 639 |
+
original_len = cat_condition.size(1)
|
| 640 |
+
# pad cat_condition to compile_len
|
| 641 |
+
if self.dit_compiled:
|
| 642 |
+
cat_condition = torch.nn.functional.pad(cat_condition,
|
| 643 |
+
(0, 0, 0, self.compile_len - cat_condition.size(1),), value=0)
|
| 644 |
+
with torch.autocast(device_type=device.type, dtype=torch.float32): # force CFM to use float32
|
| 645 |
+
# Voice Conversion
|
| 646 |
+
vc_mel = self.cfm.inference(
|
| 647 |
+
cat_condition,
|
| 648 |
+
torch.LongTensor([original_len]).to(device),
|
| 649 |
+
target_mel, target_style, diffusion_steps,
|
| 650 |
+
inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate],
|
| 651 |
+
random_voice=anonymization_only,
|
| 652 |
+
)
|
| 653 |
+
vc_mel = vc_mel[:, :, target_mel_len:original_len]
|
| 654 |
+
vc_wave = self.vocoder(vc_mel).squeeze()[None]
|
| 655 |
+
|
| 656 |
+
processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks(
|
| 657 |
+
vc_wave, processed_frames, vc_mel, overlap_wave_len,
|
| 658 |
+
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
if stream_output and mp3_bytes is not None:
|
| 662 |
+
yield mp3_bytes, full_audio
|
| 663 |
+
if should_break:
|
| 664 |
+
break
|