Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import yaml | |
| import os | |
| from huggingface_hub import hf_hub_download | |
| # Assuming these are available in your Space's environment | |
| # from seed_vc_wrapper import SeedVCWrapper | |
| # from modules.v2.vc_wrapper import VoiceConversionWrapper | |
| # --- CONFIGURATION (UPDATE YOUR_USERNAME HERE) --- | |
| # Your correct model repository ID for automatic download in the Space | |
| MODEL_REPO_ID = "Bajiyo/dhanush_seedvc" | |
| CFM_FILE = "CFM_epoch_00651_step_21500.pth" | |
| AR_FILE = "AR_epoch_00651_step_21500.pth" | |
| # ----------------------------------------------- | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| elif torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| else: | |
| device = torch.device("cpu") | |
| dtype = torch.float16 | |
| def load_models(args): | |
| """ | |
| Loads models, prioritizing command-line arguments for local paths, | |
| and falling back to Hugging Face Hub download for the Space environment. | |
| """ | |
| # --- 1. Determine Checkpoint Paths --- | |
| if args.cfm_checkpoint_path: | |
| cfm_local_path = args.cfm_checkpoint_path | |
| print(f"Using local CFM checkpoint path from arguments: {cfm_local_path}") | |
| else: | |
| # Default behavior for Space: download from HF | |
| LOCAL_CHECKPOINTS_DIR = "downloaded_checkpoints" | |
| os.makedirs(LOCAL_CHECKPOINTS_DIR, exist_ok=True) | |
| print(f"Arguments not provided. Downloading CFM checkpoint from {MODEL_REPO_ID}...") | |
| cfm_local_path = hf_hub_download( | |
| repo_id=MODEL_REPO_ID, | |
| filename=CFM_FILE, | |
| local_dir=LOCAL_CHECKPOINTS_DIR, | |
| local_dir_use_symlinks=False | |
| ) | |
| print(f"CFM checkpoint downloaded to: {cfm_local_path}") | |
| if args.ar_checkpoint_path: | |
| ar_local_path = args.ar_checkpoint_path | |
| print(f"Using local AR checkpoint path from arguments: {ar_local_path}") | |
| else: | |
| # Default behavior for Space: download from HF | |
| LOCAL_CHECKPOINTS_DIR = "downloaded_checkpoints" | |
| os.makedirs(LOCAL_CHECKPOINTS_DIR, exist_ok=True) # Ensure dir exists | |
| print(f"Arguments not provided. Downloading AR checkpoint from {MODEL_REPO_ID}...") | |
| ar_local_path = hf_hub_download( | |
| repo_id=MODEL_REPO_ID, | |
| filename=AR_FILE, | |
| local_dir=LOCAL_CHECKPOINTS_DIR, | |
| local_dir_use_symlinks=False | |
| ) | |
| print(f"AR checkpoint downloaded to: {ar_local_path}") | |
| # --- 2. Instantiate and load models --- | |
| from hydra.utils import instantiate | |
| from omegaconf import DictConfig | |
| # Assuming 'configs/v2/vc_wrapper.yaml' is present in the Space repo | |
| cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r"))) | |
| vc_wrapper = instantiate(cfg) | |
| # Load the determined checkpoints (either local paths or downloaded HF paths) | |
| vc_wrapper.load_checkpoints( | |
| ar_checkpoint_path=ar_local_path, | |
| cfm_checkpoint_path=cfm_local_path | |
| ) | |
| vc_wrapper.to(device) | |
| vc_wrapper.eval() | |
| vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device) | |
| if args.compile: | |
| # Standard torch compile settings | |
| torch._inductor.config.coordinate_descent_tuning = True | |
| torch._inductor.config.triton.unique_kernel_names = True | |
| if hasattr(torch._inductor.config, "fx_graph_cache"): | |
| torch._inductor.config.fx_graph_cache = True | |
| vc_wrapper.compile_ar() | |
| # vc_wrapper.compile_cfm() | |
| return vc_wrapper | |
| def main(args): | |
| # load_models handles the download and initialization now | |
| vc_wrapper = load_models(args) | |
| # Define wrapper function for Gradio. NO DECORATORS HERE. | |
| # This wrapper ensures the streaming output works correctly in the Gradio Interface. | |
| def convert_voice_wrapper(source_audio_path, target_audio_path, diffusion_steps, | |
| length_adjust, intelligibility_cfg_rate, similarity_cfg_rate, | |
| top_p, temperature, repetition_penalty, convert_style, | |
| anonymization_only, stream_output=True): | |
| """ | |
| Wrapper function for vc_wrapper.convert_voice_with_streaming. | |
| """ | |
| yield from vc_wrapper.convert_voice_with_streaming( | |
| source_audio_path=source_audio_path, | |
| target_audio_path=target_audio_path, | |
| diffusion_steps=diffusion_steps, | |
| length_adjust=length_adjust, | |
| intelligebility_cfg_rate=intelligibility_cfg_rate, | |
| similarity_cfg_rate=similarity_cfg_rate, | |
| top_p=top_p, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| convert_style=convert_style, | |
| anonymization_only=anonymization_only, | |
| device=device, | |
| dtype=dtype, | |
| stream_output=stream_output | |
| ) | |
| # Set up Gradio interface | |
| description = ("Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) " | |
| "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> " | |
| "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> " | |
| "无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc]<br>" | |
| "请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。") | |
| inputs = [ | |
| gr.Audio(type="filepath", label="Source Audio / 源音频"), | |
| gr.Audio(type="filepath", label="Reference Audio / 参考音频"), | |
| gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps / 扩散步数", | |
| info="30 by default, 50~100 for best quality / 默认为 30,50~100 为最佳质量"), | |
| gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", | |
| info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"), | |
| gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.5, label="Intelligibility CFG Rate", | |
| info="controls pronunciation intelligibility / 控制发音清晰度"), | |
| gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.5, label="Similarity CFG Rate", | |
| info="controls similarity to reference audio / 控制与参考音频的相似度"), | |
| gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p", | |
| info="Controls diversity of generated audio / 控制生成音频的多样性"), | |
| gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature", | |
| info="Controls randomness of generated audio / 控制生成音频的随机性"), | |
| gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty", | |
| info="Penalizes repetition in generated audio / 惩罚生成音频中的重复"), | |
| gr.Checkbox(label="convert style", value=False), | |
| gr.Checkbox(label="anonymization only", value=False), | |
| ] | |
| examples = [ | |
| ["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.5, 0.5, 0.9, 1.0, 1.0, False, False], | |
| ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 50, 1.0, 0.5, 0.5, 0.9, 1.0, 1.0, False, False], | |
| ] | |
| outputs = [ | |
| gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'), | |
| gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav') | |
| ] | |
| # Launch the Gradio interface | |
| gr.Interface( | |
| fn=convert_voice_wrapper, # Using the wrapper for reliable streaming | |
| description=description, | |
| inputs=inputs, | |
| outputs=outputs, | |
| title="Seed Voice Conversion V2", | |
| examples=examples, | |
| cache_examples=False, | |
| ).queue().launch(share=False) | |
| if __name__ == "__main__": | |
| import argparse | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--compile", action="store_true", help="Compile the model using torch.compile") | |
| # These are the arguments that allow you to run the script locally with specific paths | |
| parser.add_argument("--ar-checkpoint-path", type=str, default=None, | |
| help="Path to custom AR checkpoint file. Defaults to HF download in Space.") | |
| parser.add_argument("--cfm-checkpoint-path", type=str, default=None, | |
| help="Path to custom CFM checkpoint file. Defaults to HF download in Space.") | |
| args = parser.parse_args() | |
| main(args) |