Spaces:
Running
Running
File size: 8,278 Bytes
ac28dc4 03e24ee c6d0958 1174a8a 03e24ee 9340499 10c4fbc 03e24ee 10c4fbc 03e24ee ac28dc4 10c4fbc 03e24ee ac28dc4 03e24ee ac28dc4 03e24ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
import torch
import yaml
import os
from huggingface_hub import hf_hub_download
# Assuming these are available in your Space's environment
# from seed_vc_wrapper import SeedVCWrapper
# from modules.v2.vc_wrapper import VoiceConversionWrapper
# --- CONFIGURATION (UPDATE YOUR_USERNAME HERE) ---
# Replace 'YOUR_USERNAME' with your actual Hugging Face username
MODEL_REPO_ID = "Bajiyo/dhanush_seedvc"
CFM_FILE = "CFM_epoch_00651_step_21500.pth"
AR_FILE = "AR_epoch_00651_step_21500.pth"
# -----------------------------------------------
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
dtype = torch.float16
def load_models(args):
"""
Loads models, handling checkpoint download from Hugging Face Hub.
"""
# 1. Setup local directory and download checkpoints
LOCAL_CHECKPOINTS_DIR = "downloaded_checkpoints"
os.makedirs(LOCAL_CHECKPOINTS_DIR, exist_ok=True)
print(f"Downloading checkpoints from {MODEL_REPO_ID}...")
# Download CFM
cfm_local_path = hf_hub_download(
repo_id=MODEL_REPO_ID,
filename=CFM_FILE,
local_dir=LOCAL_CHECKPOINTS_DIR,
local_dir_use_symlinks=False
)
print(f"CFM checkpoint downloaded to: {cfm_local_path}")
# Download AR
ar_local_path = hf_hub_download(
repo_id=MODEL_REPO_ID,
filename=AR_FILE,
local_dir=LOCAL_CHECKPOINTS_DIR,
local_dir_use_symlinks=False
)
print(f"AR checkpoint downloaded to: {ar_local_path}")
# 2. Instantiate and load models
from hydra.utils import instantiate
from omegaconf import DictConfig
# Assuming 'configs/v2/vc_wrapper.yaml' is present in the Space repo
cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r")))
vc_wrapper = instantiate(cfg)
# Load the downloaded checkpoints
vc_wrapper.load_checkpoints(
ar_checkpoint_path=ar_local_path,
cfm_checkpoint_path=cfm_local_path
)
vc_wrapper.to(device)
vc_wrapper.eval()
vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device)
if args.compile:
# Standard torch compile settings
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
if hasattr(torch._inductor.config, "fx_graph_cache"):
torch._inductor.config.fx_graph_cache = True
vc_wrapper.compile_ar()
# vc_wrapper.compile_cfm()
return vc_wrapper
def main(args):
# load_models handles the download and initialization now
vc_wrapper = load_models(args)
# Define wrapper function for Gradio to ensure arguments are handled correctly
@gr.Gradio()
@spaces.GPU # Ensures conversion runs on the specified GPU if available
def convert_voice_wrapper(source_audio_path, target_audio_path, diffusion_steps,
length_adjust, intelligibility_cfg_rate, similarity_cfg_rate,
top_p, temperature, repetition_penalty, convert_style,
anonymization_only, stream_output=True):
"""
Wrapper function for vc_wrapper.convert_voice_with_streaming that can be decorated.
"""
# Ensure correct type for the stream_output argument if needed,
# though the main function is now calling convert_voice_with_streaming directly
yield from vc_wrapper.convert_voice_with_streaming(
source_audio_path=source_audio_path,
target_audio_path=target_audio_path,
diffusion_steps=diffusion_steps,
length_adjust=length_adjust,
intelligebility_cfg_rate=intelligibility_cfg_rate,
similarity_cfg_rate=similarity_cfg_rate,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
convert_style=convert_style,
anonymization_only=anonymization_only,
device=device,
dtype=dtype,
stream_output=stream_output
)
# Set up Gradio interface
description = ("Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
"无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc]<br>"
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")
inputs = [
gr.Audio(type="filepath", label="Source Audio / 源音频"),
gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps / 扩散步数",
info="30 by default, 50~100 for best quality / 默认为 30,50~100 为最佳质量"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整",
info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.5, label="Intelligibility CFG Rate",
info="controls pronunciation intelligibility / 控制发音清晰度"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.5, label="Similarity CFG Rate",
info="controls similarity to reference audio / 控制与参考音频的相似度"),
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p",
info="Controls diversity of generated audio / 控制生成音频的多样性"),
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature",
info="Controls randomness of generated audio / 控制生成音频的随机性"),
gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty",
info="Penalizes repetition in generated audio / 惩罚生成音频中的重复"),
gr.Checkbox(label="convert style", value=False),
gr.Checkbox(label="anonymization only", value=False),
]
examples = [
["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.5, 0.5, 0.9, 1.0, 1.0, False, False],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 50, 1.0, 0.5, 0.5, 0.9, 1.0, 1.0, False, False],
]
outputs = [
gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')
]
# Launch the Gradio interface
gr.Interface(
fn=convert_voice_wrapper,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion V2",
examples=examples,
cache_examples=False,
).queue().launch(share=False) # Changed share=True to share=False for Spaces deployment
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--compile", action="store_true", help="Compile the model using torch.compile")
# These arguments are now effectively ignored/not needed since we download the models
# but we keep them to maintain compatibility with the original script structure.
parser.add_argument("--ar-checkpoint-path", type=str, default=None,
help="Path to custom checkpoint file (overridden by HF download in Space)")
parser.add_argument("--cfm-checkpoint-path", type=str, default=None,
help="Path to custom checkpoint file (overridden by HF download in Space)")
args = parser.parse_args()
main(args) |