Spaces:
Paused
Paused
File size: 5,574 Bytes
d8328bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
"""Sandboxed Python execution environment for the NexaSci tool server."""
from __future__ import annotations
import builtins
import io
import os
import queue
import shutil
import sys
import tempfile
import traceback
from contextlib import redirect_stderr, redirect_stdout
from dataclasses import dataclass
from multiprocessing import Event, Process, Queue, get_context
from pathlib import Path
from typing import Dict, Iterable, List, Sequence
from tools.schemas import ArtifactRecord, PythonRunRequest, PythonRunResponse
try: # POSIX-only module; guard for portability.
import resource
except ImportError: # pragma: no cover - platform specific.
resource = None # type: ignore
ALLOWED_BUILTINS: Sequence[str] = (
"abs",
"all",
"any",
"bool",
"complex",
"dict",
"enumerate",
"float",
"int",
"len",
"list",
"map",
"max",
"min",
"pow",
"print",
"range",
"round",
"set",
"slice",
"sorted",
"str",
"sum",
"tuple",
"zip",
)
DEFAULT_ALLOWED_MODULES: Sequence[str] = (
"math",
"statistics",
"numpy",
"scipy",
"pandas",
"sympy",
"matplotlib",
"matplotlib.pyplot",
"seaborn",
)
@dataclass(frozen=True)
class SandboxConfig:
"""Configuration describing the sandbox constraints."""
timeout_s: int = 10
memory_limit_mb: int = 2048
working_directory: Path = Path(tempfile.gettempdir()) / "nexasci_python_sandbox"
allowed_modules: Sequence[str] = DEFAULT_ALLOWED_MODULES
def ensure_directory(self) -> None:
"""Create the sandbox working directory if it does not already exist."""
self.working_directory.mkdir(parents=True, exist_ok=True)
def _restricted_builtins() -> Dict[str, object]:
"""Return a dictionary of safe builtins exposed to sandboxed code."""
return {name: getattr(builtins, name) for name in ALLOWED_BUILTINS}
def _apply_memory_limit(memory_limit_mb: int) -> None:
"""Apply a per-process address space limit if supported by the platform."""
if resource is None:
return
soft_limit = hard_limit = memory_limit_mb * 1024 * 1024
try:
resource.setrlimit(resource.RLIMIT_AS, (soft_limit, hard_limit))
except (ValueError, resource.error): # pragma: no cover - platform differences.
pass
def _sandbox_worker(
code: str,
queue_: Queue,
allowed_modules: Sequence[str],
memory_limit_mb: int,
work_dir: Path,
stop_event: Event,
) -> None:
"""Execute user code inside a sandboxed process and report results via queue."""
stdout_buffer = io.StringIO()
stderr_buffer = io.StringIO()
_apply_memory_limit(memory_limit_mb)
os.chdir(work_dir)
safe_globals: Dict[str, object] = {"__builtins__": _restricted_builtins()}
for module_name in allowed_modules:
try:
module = __import__(module_name)
safe_globals[module_name.split(".")[0]] = module
except Exception as exc: # pragma: no cover - defensive.
stderr_buffer.write(f"Failed to import allowed module '{module_name}': {exc}\n")
try:
compiled = compile(code, "<sandbox>", "exec")
with redirect_stdout(stdout_buffer), redirect_stderr(stderr_buffer):
exec(compiled, safe_globals, {})
except Exception: # pragma: no cover - propagate errors to stderr.
traceback.print_exc(file=stderr_buffer)
finally:
queue_.put(
{
"stdout": stdout_buffer.getvalue(),
"stderr": stderr_buffer.getvalue(),
}
)
stop_event.set()
def _collect_artifacts(directory: Path) -> List[ArtifactRecord]:
"""Collect non-code artifacts generated within the sandbox directory."""
artifacts: List[ArtifactRecord] = []
for path in directory.iterdir():
if path.is_dir():
continue
if path.suffix == ".py":
continue
artifacts.append(
ArtifactRecord(
name=path.name,
path=str(path),
mime_type=None,
)
)
return artifacts
def execute_python(request: PythonRunRequest, config: SandboxConfig) -> PythonRunResponse:
"""Execute Python code within the configured sandbox."""
config.ensure_directory()
run_dir = Path(tempfile.mkdtemp(dir=config.working_directory))
queue_: Queue = get_context("spawn").Queue()
stop_event: Event = get_context("spawn").Event()
process = Process(
target=_sandbox_worker,
kwargs={
"code": request.code,
"queue_": queue_,
"allowed_modules": config.allowed_modules,
"memory_limit_mb": config.memory_limit_mb,
"work_dir": run_dir,
"stop_event": stop_event,
},
daemon=True,
)
process.start()
try:
stop_event.wait(timeout=request.timeout_s or config.timeout_s)
finally:
if process.is_alive():
process.terminate()
process.join(timeout=1)
stdout = ""
stderr = ""
try:
result = queue_.get_nowait()
stdout = result.get("stdout", "")
stderr = result.get("stderr", "")
except queue.Empty:
stderr = "Execution timed out or produced no output."
artifacts = _collect_artifacts(run_dir)
shutil.rmtree(run_dir, ignore_errors=True)
return PythonRunResponse(stdout=stdout, stderr=stderr, artifacts=artifacts)
__all__ = ["DEFAULT_ALLOWED_MODULES", "SandboxConfig", "execute_python"]
|