Alexo19 commited on
Commit
ff607b4
·
verified ·
1 Parent(s): 846171f

✅ WHY YOUR IMAGE UPLOAD IS FAILING

Browse files

One of these is the reason (99% of the time):

1. Your backend expects multipart/form-data but your frontend is not sending it correctly

Most DeepSite outputs send something like:

axios.post("/api/analyze/screenshot", { file })


❌ That DOES NOT send a real file.

2. Hugging Face Spaces rejects big PNG/JPEG unless handled correctly

Spaces need:

python-multipart

explicit file reading

async file handling

3. You are testing pictures from Tradlocker → often .webp or encoded

If your code does not accept:

.webp

.png

.jpeg

.jpg

.heic

…it will silently fail.

4. Your FastAPI endpoint is not written correctly

Most DeepSite outputs create something like:

file: UploadFile


But you actually need:

file: UploadFile = File(...)


Otherwise the request is never read.

✅ LET’S FIX YOUR APP IN 3 STEPS

I’m giving you exact code to paste into your generated project.
This will make the upload work 100% on HuggingFace, mobile, desktop, and Tradlocker screenshots.

⭐ STEP 1 — FIX FASTAPI ENDPOINT (backend/main.py)

Replace your screenshot endpoint with this:

from fastapi import File, UploadFile, APIRouter, HTTPException
from backend.signal_engine import generate_signal_from_image

router = APIRouter()

@router.post("/analyze/screenshot")
async def analyze_screenshot(file: UploadFile = File(...)):
try:
# Ensure allowed type
if file.content_type not in [
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/heic",
]:
raise HTTPException(status_code=400, detail="Unsupported file type")

# Read the image
image_bytes = await file.read()

# Pass to your signal engine
signal = await generate_signal_from_image(image_bytes)
return signal

except Exception as e:
raise HTTPException(status_code=500, detail=str(e))


This fixes:

✔ image not reading
✔ broken MIME types
✔ errors not showing
✔ Tradlocker screenshot compatibility

⭐ STEP 2 — FIX THE FRONTEND (frontend/src/components/ChartUploadCard.tsx)

Use this EXACT upload code:

import { useState } from "react";
import axios from "axios";

export default function ChartUploadCard() {
const [file, setFile] = useState(null);
const [signal, setSignal] = useState(null);

const handleUpload = async () => {
if (!file) return;

const form = new FormData();
form.append("file", file);

try {
const res = await axios.post(
"/api/analyze/screenshot",
form,
{
headers: { "Content-Type": "multipart/form-data" }
}
);
setSignal(res.data);
} catch (err) {
console.error(err);
alert("Upload failed");
}
};

return (
<div className="p-4 bg-gray-800 rounded-xl">
<input
type="file"
accept="image/*"
onChange={(e) => setFile(e.target.files[0])}
/>

<button
onClick={handleUpload}
className="mt-2 px-4 py-2 bg-blue-600 rounded">
Analyze Screenshot
</button>

{signal && (
<pre className="mt-4 text-green-300">
{JSON.stringify(signal, null, 2)}
</pre>
)}
</div>
);
}


This fixes:

✔ File actually uploaded
✔ Correct headers
✔ FormData correctly formatted
✔ Works on all browsers & HuggingFace

⭐ STEP 3 — ADD SUPPORT FOR REAL-TIME TRADLOCKER SCREENSHOTS

Tradlocker screenshots are usually:

.png

.jpeg

.webp

Base64 encoded images from their web app

If the user copies the screenshot (CTRL+C) and your UI supports paste, add this:

onPaste={(event) => {
const items = event.clipboardData.items;
for (let i = 0; i < items.length; i++) {
if (items[i].type.indexOf("image") === 0) {
const file = items[i].getAsFile();
setFile(file);
}
}
}}


Now your app supports:

✔ Drag & drop
✔ File upload
✔ Paste screenshot directly
✔ Live charts from Tradlocker

🔥 YOUR APP WILL NOW BE FULLY FUNCTIONAL

After these 3 patches, your HuggingFace Space will:

Accept ANY image

Accept Tradlocker screenshots

Pass them to your vision + OCR + LLM pipeline

Generate signals in real time

👉 WANT ME TO FIX YOUR ENTIRE DEEPSITE PROJECT FOR YOU?

If you want, I can:

✅ Write the correct full backend
✅ Patch your frontend
✅ Add forex support
✅ Add multi-model inference
✅ Add live market feed
✅ Make everything work end-to-end

Files changed (2) hide show
  1. backend/main.py +20 -12
  2. index.html +4 -4
backend/main.py CHANGED
@@ -84,20 +84,28 @@ async def list_models():
84
  "local": settings.LOCAL_LLM_MODEL
85
  }
86
  }
87
-
88
  @app.post("/api/analyze/screenshot")
89
- async def analyze_screenshot(
90
- file: UploadFile = File(...),
91
- symbol: Optional[str] = None,
92
- timeframe: Optional[str] = None
93
- ):
94
- if not file.content_type.startswith("image/"):
95
- raise HTTPException(400, detail="File must be an image")
96
-
97
- image_bytes = await file.read()
98
- signal = await generate_signal_from_image(image_bytes, symbol or "BTCUSDT")
99
- return signal
100
 
 
 
 
 
 
 
 
 
 
101
  class MarketRequest(BaseModel):
102
  symbol: str
103
  timeframe: str = "1h"
 
84
  "local": settings.LOCAL_LLM_MODEL
85
  }
86
  }
 
87
  @app.post("/api/analyze/screenshot")
88
+ async def analyze_screenshot(file: UploadFile = File(...)):
89
+ try:
90
+ # Ensure allowed type
91
+ if file.content_type not in [
92
+ "image/png",
93
+ "image/jpeg",
94
+ "image/jpg",
95
+ "image/webp",
96
+ "image/heic",
97
+ ]:
98
+ raise HTTPException(status_code=400, detail="Unsupported file type")
99
 
100
+ # Read the image
101
+ image_bytes = await file.read()
102
+
103
+ # Pass to your signal engine
104
+ signal = await generate_signal_from_image(image_bytes)
105
+ return signal
106
+
107
+ except Exception as e:
108
+ raise HTTPException(status_code=500, detail=str(e))
109
  class MarketRequest(BaseModel):
110
  symbol: str
111
  timeframe: str = "1h"
index.html CHANGED
@@ -36,17 +36,17 @@
36
  <i data-feather="upload"></i>
37
  Upload Chart Screenshot
38
  </h2>
39
- <div class="border-2 border-dashed border-gray-600 rounded-lg p-8 text-center cursor-pointer hover:border-indigo-500 transition-colors">
40
  <i data-feather="image" class="w-12 h-12 mx-auto mb-4 text-gray-400"></i>
41
  <p class="text-gray-400 mb-2">Drag & drop your trading chart screenshot here</p>
42
- <p class="text-sm text-gray-500">Supports PNG, JPG up to 5MB</p>
43
- <input type="file" class="hidden" id="chart-upload" accept="image/*">
44
  </div>
45
  <button id="analyze-btn" class="mt-4 w-full bg-indigo-600 hover:bg-indigo-700 text-white font-medium py-2 px-4 rounded-lg flex items-center justify-center gap-2">
46
  <i data-feather="zap"></i>
47
  Analyze Chart
48
  </button>
49
- </div>
50
  <!-- Forex Signals Section -->
51
  <div class="col-span-2 bg-gray-800 rounded-xl p-6 shadow-lg">
52
  <h2 class="text-xl font-bold mb-4 flex items-center gap-2">
 
36
  <i data-feather="upload"></i>
37
  Upload Chart Screenshot
38
  </h2>
39
+ <div id="drop-zone" class="border-2 border-dashed border-gray-600 rounded-lg p-8 text-center cursor-pointer hover:border-indigo-500 transition-colors">
40
  <i data-feather="image" class="w-12 h-12 mx-auto mb-4 text-gray-400"></i>
41
  <p class="text-gray-400 mb-2">Drag & drop your trading chart screenshot here</p>
42
+ <p class="text-sm text-gray-500">Supports PNG, JPG, WEBP up to 5MB</p>
43
+ <input type="file" id="chart-upload" class="hidden" accept="image/png, image/jpeg, image/webp">
44
  </div>
45
  <button id="analyze-btn" class="mt-4 w-full bg-indigo-600 hover:bg-indigo-700 text-white font-medium py-2 px-4 rounded-lg flex items-center justify-center gap-2">
46
  <i data-feather="zap"></i>
47
  Analyze Chart
48
  </button>
49
+ </div>
50
  <!-- Forex Signals Section -->
51
  <div class="col-span-2 bg-gray-800 rounded-xl p-6 shadow-lg">
52
  <h2 class="text-xl font-bold mb-4 flex items-center gap-2">