Spaces:
Build error
Build error
Upload 3 files
Browse files- AI_Chat_Bot.py +19 -0
- pages/1_Interactive Chat Bot.py +52 -0
- pages/2_Non-Interactive Chat Bot.py +30 -0
AI_Chat_Bot.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
st.title("AI Chat Bot Dashboard")
|
| 4 |
+
|
| 5 |
+
st.header('Interactive Chatbot')
|
| 6 |
+
|
| 7 |
+
st.write('''An interactive chatbot is designed to engage in dynamic, back-and-forth conversations with users.
|
| 8 |
+
These chatbots can understand and retain context from previous interactions, making their responses more
|
| 9 |
+
relevant and coherent as the conversation progresses. Interactive chatbots often use advanced natural language
|
| 10 |
+
processing (NLP) techniques and memory management to provide a more human-like experience. They are commonly used
|
| 11 |
+
in applications where ongoing interaction and context awareness are crucial, such as customer support, virtual
|
| 12 |
+
assistants, and personalized recommendations.''')
|
| 13 |
+
|
| 14 |
+
st.header('Non-Interactive Chatbot')
|
| 15 |
+
|
| 16 |
+
st.write('''A non-interactive chatbot, on the other hand, is designed for more straightforward, single-turn interactions.
|
| 17 |
+
These chatbots do not retain context from previous interactions, meaning each user query is treated independently.
|
| 18 |
+
Non-interactive chatbots are typically used for simple, transactional tasks where context is not required. They are
|
| 19 |
+
easier to develop and deploy and are suitable for scenarios where the interaction is brief and to the point.''')
|
pages/1_Interactive Chat Bot.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 5 |
+
from langchain_core.prompts import MessagesPlaceholder
|
| 6 |
+
from langchain.memory import ConversationBufferWindowMemory
|
| 7 |
+
from operator import itemgetter
|
| 8 |
+
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
| 9 |
+
|
| 10 |
+
# Set the API key for Google Generative AI
|
| 11 |
+
os.environ['GOOGLE_API_KEY'] = 'AIzaSyBHPIIk4-BOgXvnQ2_o6c2wTGpY2ByRIDs'
|
| 12 |
+
|
| 13 |
+
# Initialize the Google Generative AI model
|
| 14 |
+
model_gemini = ChatGoogleGenerativeAI(model='gemini-pro', temperature=0, max_output_tokens=500, convert_system_message_to_human=True)
|
| 15 |
+
|
| 16 |
+
# Define the prompt
|
| 17 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 18 |
+
[
|
| 19 |
+
('system', 'you are a good assistant.'),
|
| 20 |
+
MessagesPlaceholder(variable_name='history'),
|
| 21 |
+
("human", "{input}")
|
| 22 |
+
]
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Initialize memory in session state
|
| 26 |
+
if 'memory' not in st.session_state:
|
| 27 |
+
st.session_state.memory = ConversationBufferWindowMemory(k=10, return_messages=True)
|
| 28 |
+
|
| 29 |
+
# Define the chain
|
| 30 |
+
chain = (RunnablePassthrough.assign(history=RunnableLambda(st.session_state.memory.load_memory_variables) | itemgetter("history")) |
|
| 31 |
+
prompt | model_gemini)
|
| 32 |
+
|
| 33 |
+
# Streamlit app
|
| 34 |
+
st.title("Interactive Chatbot")
|
| 35 |
+
|
| 36 |
+
# Initialize session state for user input
|
| 37 |
+
if 'user_input' not in st.session_state:
|
| 38 |
+
st.session_state.user_input = ""
|
| 39 |
+
|
| 40 |
+
# Input from user
|
| 41 |
+
user_input = st.text_area("User: ", st.session_state.user_input, height=100)
|
| 42 |
+
|
| 43 |
+
if st.button("Submit"):
|
| 44 |
+
response = chain.invoke({"input": user_input})
|
| 45 |
+
st.write(f"Assistant: {response.content}")
|
| 46 |
+
st.session_state.memory.save_context({"input": user_input}, {"output": response.content})
|
| 47 |
+
st.session_state.user_input = "" # Clear the input box
|
| 48 |
+
|
| 49 |
+
# Display chat history
|
| 50 |
+
if st.checkbox("Show Chat History"):
|
| 51 |
+
chat_history = st.session_state.memory.load_memory_variables({})
|
| 52 |
+
st.write(chat_history)
|
pages/2_Non-Interactive Chat Bot.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 5 |
+
|
| 6 |
+
# Set GOOGLE_API_KEY
|
| 7 |
+
os.environ['GOOGLE_API_KEY'] = 'AIzaSyBHPIIk4-BOgXvnQ2_o6c2wTGpY2ByRIDs'
|
| 8 |
+
|
| 9 |
+
st.title("Non-Interactive Chat Bot")
|
| 10 |
+
|
| 11 |
+
model_gemini = ChatGoogleGenerativeAI(
|
| 12 |
+
model='gemini-pro',
|
| 13 |
+
temperature=0,
|
| 14 |
+
max_output_tokens=500,
|
| 15 |
+
convert_system_message_to_human=True
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Assuming model_gemini is defined correctly elsewhere
|
| 19 |
+
prompt = ChatPromptTemplate.from_template("{content}")
|
| 20 |
+
chain = prompt | model_gemini
|
| 21 |
+
|
| 22 |
+
input_text = st.text_area('Ask your Question :', height=100)
|
| 23 |
+
|
| 24 |
+
# Add a button to trigger the chatbot response
|
| 25 |
+
if st.button('Submit'):
|
| 26 |
+
# Invoke the chain with input text
|
| 27 |
+
response = chain.invoke({'content': input_text})
|
| 28 |
+
|
| 29 |
+
# Display response on the Streamlit web interface
|
| 30 |
+
st.write(response.content)
|