File size: 1,902 Bytes
392151a
 
 
 
 
 
 
 
 
d7fdd5f
 
392151a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
import os
from langchain_core.prompts import ChatPromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.prompts import MessagesPlaceholder
from langchain.memory import ConversationBufferWindowMemory
from operator import itemgetter
from langchain_core.runnables import RunnableLambda, RunnablePassthrough

# Set your Google API key from environment variables
gemini_api_key = os.getenv("GOOGLE_API_KEY")

# Initialize the Google Generative AI model
model_gemini = ChatGoogleGenerativeAI(model='gemini-pro', temperature=0, max_output_tokens=500, convert_system_message_to_human=True)

# Define the prompt
prompt = ChatPromptTemplate.from_messages(
    [
        ('system', 'you are a good assistant.'),
        MessagesPlaceholder(variable_name='history'),
        ("human", "{input}")
    ]
)

# Initialize memory in session state
if 'memory' not in st.session_state:
    st.session_state.memory = ConversationBufferWindowMemory(k=10, return_messages=True)

# Define the chain
chain = (RunnablePassthrough.assign(history=RunnableLambda(st.session_state.memory.load_memory_variables) | itemgetter("history")) |
         prompt | model_gemini)

# Streamlit app
st.title("Interactive Chatbot")

# Initialize session state for user input
if 'user_input' not in st.session_state:
    st.session_state.user_input = ""

# Input from user
user_input = st.text_area("User: ", st.session_state.user_input, height=100)

if st.button("Submit"):
    response = chain.invoke({"input": user_input})
    st.write(f"Assistant: {response.content}")
    st.session_state.memory.save_context({"input": user_input}, {"output": response.content})
    st.session_state.user_input = ""  # Clear the input box

# Display chat history
if st.checkbox("Show Chat History"):
    chat_history = st.session_state.memory.load_memory_variables({})
    st.write(chat_history)