#!/usr/bin/python #-*- coding: utf-8 -*- import torch import torch.nn as nn def save(model, filename): with open(filename, "wb") as f: torch.save(model, f); print("%s saved."%filename); def load(filename): net = torch.load(filename) return net; class S(nn.Module): def __init__(self, num_layers_in_fc_layers = 1024): super(S, self).__init__(); self.__nFeatures__ = 24; self.__nChs__ = 32; self.__midChs__ = 32; self.netcnnaud = nn.Sequential( nn.Conv2d(1, 64, kernel_size=(3,3), stride=(1,1), padding=(1,1)), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=(1,1), stride=(1,1)), nn.Conv2d(64, 192, kernel_size=(3,3), stride=(1,1), padding=(1,1)), nn.BatchNorm2d(192), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=(3,3), stride=(1,2)), nn.Conv2d(192, 384, kernel_size=(3,3), padding=(1,1)), nn.BatchNorm2d(384), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=(3,3), padding=(1,1)), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=(3,3), padding=(1,1)), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=(3,3), stride=(2,2)), nn.Conv2d(256, 512, kernel_size=(5,4), padding=(0,0)), nn.BatchNorm2d(512), nn.ReLU(), ); self.netfcaud = nn.Sequential( nn.Linear(512, 512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512, num_layers_in_fc_layers), ); self.netfclip = nn.Sequential( nn.Linear(512, 512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512, num_layers_in_fc_layers), ); self.netcnnlip = nn.Sequential( nn.Conv3d(3, 96, kernel_size=(5,7,7), stride=(1,2,2), padding=0), nn.BatchNorm3d(96), nn.ReLU(inplace=True), nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2)), nn.Conv3d(96, 256, kernel_size=(1,5,5), stride=(1,2,2), padding=(0,1,1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)), nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2)), nn.Conv3d(256, 512, kernel_size=(1,6,6), padding=0), nn.BatchNorm3d(512), nn.ReLU(inplace=True), ); def forward_aud(self, x): mid = self.netcnnaud(x); # N x ch x 24 x M mid = mid.view((mid.size()[0], -1)); # N x (ch x 24) out = self.netfcaud(mid); return out; def forward_lip(self, x): mid = self.netcnnlip(x); mid = mid.view((mid.size()[0], -1)); # N x (ch x 24) out = self.netfclip(mid); return out; def forward_lipfeat(self, x): mid = self.netcnnlip(x); out = mid.view((mid.size()[0], -1)); # N x (ch x 24) return out;