#!/usr/bin/env python # -*- coding: utf-8 -*- """ Training script for FCN-SyncNet CLASSIFICATION model. Key differences from regression training: - Uses CrossEntropyLoss instead of MSE - Treats offset as discrete classes (-15 to +15 = 31 classes) - Tracks classification accuracy as primary metric - Avoids regression-to-mean problem Usage: python train_syncnet_fcn_classification.py --data_dir /path/to/dataset python train_syncnet_fcn_classification.py --data_dir /path/to/dataset --epochs 50 --lr 1e-4 """ import os import sys import argparse import time import gc import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.optim.lr_scheduler import CosineAnnealingLR, ReduceLROnPlateau import subprocess from scipy.io import wavfile import python_speech_features import cv2 from pathlib import Path from SyncNetModel_FCN_Classification import ( SyncNetFCN_Classification, StreamSyncFCN_Classification, create_classification_criterion, train_step_classification, validate_classification ) class AVSyncDataset(Dataset): """ Dataset for audio-video sync classification. Generates training samples with artificial offsets for data augmentation. """ def __init__(self, video_dir, max_offset=15, num_samples_per_video=10, frame_size=(112, 112), num_frames=25, cache_features=True): """ Args: video_dir: Directory containing video files max_offset: Maximum offset in frames (creates 2*max_offset+1 classes) num_samples_per_video: Number of samples to generate per video frame_size: Target frame size (H, W) num_frames: Number of frames per sample cache_features: Cache extracted features for faster training """ self.video_dir = video_dir self.max_offset = max_offset self.num_samples_per_video = num_samples_per_video self.frame_size = frame_size self.num_frames = num_frames self.cache_features = cache_features self.feature_cache = {} # Find all video files self.video_files = [] for ext in ['*.mp4', '*.avi', '*.mov', '*.mkv', '*.mpg', '*.mpeg']: self.video_files.extend(Path(video_dir).glob(f'**/{ext}')) if not self.video_files: raise ValueError(f"No video files found in {video_dir}") print(f"Found {len(self.video_files)} video files") # Generate sample list (video_idx, offset) self.samples = [] for vid_idx in range(len(self.video_files)): for _ in range(num_samples_per_video): # Random offset within range offset = np.random.randint(-max_offset, max_offset + 1) self.samples.append((vid_idx, offset)) print(f"Generated {len(self.samples)} training samples") def __len__(self): return len(self.samples) def extract_features(self, video_path): """Extract audio MFCC and video frames.""" video_path = str(video_path) # Check cache if self.cache_features and video_path in self.feature_cache: return self.feature_cache[video_path] # Extract audio temp_audio = f'temp_audio_{os.getpid()}_{np.random.randint(10000)}.wav' try: cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000', '-vn', '-acodec', 'pcm_s16le', temp_audio] subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) sample_rate, audio = wavfile.read(temp_audio) # Validate audio length (need at least num_frames * 4 MFCC frames) min_audio_samples = (self.num_frames * 4 + self.max_offset * 4) * 160 # 160 samples per MFCC frame at 16kHz if len(audio) < min_audio_samples: raise ValueError(f"Audio too short: {len(audio)} samples, need {min_audio_samples}") mfcc = python_speech_features.mfcc(audio, sample_rate, numcep=13) # Validate MFCC length min_mfcc_frames = self.num_frames * 4 + abs(self.max_offset) * 4 if len(mfcc) < min_mfcc_frames: raise ValueError(f"MFCC too short: {len(mfcc)} frames, need {min_mfcc_frames}") finally: if os.path.exists(temp_audio): os.remove(temp_audio) # Extract video frames cap = cv2.VideoCapture(video_path) frames = [] while True: ret, frame = cap.read() if not ret: break frame = cv2.resize(frame, self.frame_size) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(frame.astype(np.float32) / 255.0) cap.release() if len(frames) == 0: raise ValueError(f"No frames extracted from {video_path}") result = (mfcc, np.stack(frames)) # Cache if enabled if self.cache_features: self.feature_cache[video_path] = result return result def apply_offset(self, mfcc, frames, offset): """ Apply temporal offset between audio and video. Positive offset: audio is ahead (shift audio forward / video backward) Negative offset: video is ahead (shift video forward / audio backward) """ # MFCC is at 100Hz (10ms per frame), video at 25fps (40ms per frame) # 1 video frame = 4 MFCC frames mfcc_offset = offset * 4 num_video_frames = min(self.num_frames, len(frames) - abs(offset)) num_mfcc_frames = num_video_frames * 4 if offset >= 0: # Audio ahead: start audio later video_start = 0 mfcc_start = mfcc_offset else: # Video ahead: start video later video_start = abs(offset) mfcc_start = 0 # Extract aligned segments video_segment = frames[video_start:video_start + num_video_frames] mfcc_segment = mfcc[mfcc_start:mfcc_start + num_mfcc_frames] # Pad if needed if len(video_segment) < self.num_frames: pad_frames = self.num_frames - len(video_segment) video_segment = np.concatenate([ video_segment, np.repeat(video_segment[-1:], pad_frames, axis=0) ], axis=0) target_mfcc_len = self.num_frames * 4 if len(mfcc_segment) < target_mfcc_len: pad_mfcc = target_mfcc_len - len(mfcc_segment) mfcc_segment = np.concatenate([ mfcc_segment, np.repeat(mfcc_segment[-1:], pad_mfcc, axis=0) ], axis=0) return mfcc_segment[:target_mfcc_len], video_segment[:self.num_frames] def __getitem__(self, idx): vid_idx, offset = self.samples[idx] video_path = self.video_files[vid_idx] try: mfcc, frames = self.extract_features(video_path) mfcc, frames = self.apply_offset(mfcc, frames, offset) # Convert to tensors audio_tensor = torch.FloatTensor(mfcc.T).unsqueeze(0) # [1, 13, T] video_tensor = torch.FloatTensor(frames).permute(3, 0, 1, 2) # [3, T, H, W] offset_tensor = torch.tensor(offset, dtype=torch.long) return audio_tensor, video_tensor, offset_tensor except Exception as e: # Return None for bad samples (filtered by collate_fn) return None def collate_fn_skip_none(batch): """Custom collate function that skips None and invalid samples.""" # Filter out None samples batch = [b for b in batch if b is not None] # Filter out samples with empty tensors (0-length MFCC from videos without audio) valid_batch = [] for b in batch: audio, video, offset = b # Check if audio and video have valid sizes if audio.size(-1) > 0 and video.size(1) > 0: valid_batch.append(b) if len(valid_batch) == 0: # Return None if all samples are bad return None # Stack valid samples audio = torch.stack([b[0] for b in valid_batch]) video = torch.stack([b[1] for b in valid_batch]) offset = torch.stack([b[2] for b in valid_batch]) return audio, video, offset def train_epoch(model, dataloader, criterion, optimizer, device, max_offset): """Train for one epoch with bulletproof error handling.""" model.train() total_loss = 0 total_correct = 0 total_samples = 0 skipped_batches = 0 for batch_idx, batch in enumerate(dataloader): try: # Skip None batches (all samples were invalid) if batch is None: skipped_batches += 1 continue audio, video, target_offset = batch audio = audio.to(device) video = video.to(device) target_class = (target_offset + max_offset).long().to(device) optimizer.zero_grad() # Forward pass if hasattr(model, 'fcn_model'): class_logits, _, _ = model(audio, video) else: class_logits, _, _ = model(audio, video) # Compute loss loss = criterion(class_logits, target_class) # Backward pass loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() # Track metrics total_loss += loss.item() * audio.size(0) predicted_class = class_logits.argmax(dim=1) total_correct += (predicted_class == target_class).sum().item() total_samples += audio.size(0) if batch_idx % 10 == 0: print(f" Batch {batch_idx}/{len(dataloader)}: Loss={loss.item():.4f}, " f"Acc={(predicted_class == target_class).float().mean().item():.2%}") # Memory cleanup every 50 batches if batch_idx % 50 == 0 and batch_idx > 0: del audio, video, target_offset, target_class, class_logits, loss if device.type == 'cuda': torch.cuda.empty_cache() gc.collect() except RuntimeError as e: # Handle OOM or other runtime errors gracefully print(f" [WARNING] Batch {batch_idx} failed: {str(e)[:100]}") skipped_batches += 1 if device.type == 'cuda': torch.cuda.empty_cache() gc.collect() continue except Exception as e: # Handle any other errors print(f" [WARNING] Batch {batch_idx} error: {str(e)[:100]}") skipped_batches += 1 continue if skipped_batches > 0: print(f" [INFO] Skipped {skipped_batches} batches due to errors") if total_samples == 0: return 0.0, 0.0 return total_loss / total_samples, total_correct / total_samples def validate(model, dataloader, criterion, device, max_offset): """Validate model.""" model.eval() total_loss = 0 total_correct = 0 total_samples = 0 total_error = 0 with torch.no_grad(): for audio, video, target_offset in dataloader: audio = audio.to(device) video = video.to(device) target_class = (target_offset + max_offset).long().to(device) if hasattr(model, 'fcn_model'): class_logits, _, _ = model(audio, video) else: class_logits, _, _ = model(audio, video) loss = criterion(class_logits, target_class) total_loss += loss.item() * audio.size(0) predicted_class = class_logits.argmax(dim=1) total_correct += (predicted_class == target_class).sum().item() total_samples += audio.size(0) # Mean absolute error in frames predicted_offset = predicted_class - max_offset actual_offset = target_class - max_offset total_error += (predicted_offset - actual_offset).abs().sum().item() avg_loss = total_loss / total_samples accuracy = total_correct / total_samples mae = total_error / total_samples return avg_loss, accuracy, mae def main(): parser = argparse.ArgumentParser(description='Train FCN-SyncNet Classification Model') parser.add_argument('--data_dir', type=str, required=True, help='Directory containing training videos') parser.add_argument('--val_dir', type=str, default=None, help='Directory containing validation videos (optional)') parser.add_argument('--checkpoint_dir', type=str, default='checkpoints_classification', help='Directory to save checkpoints') parser.add_argument('--pretrained', type=str, default='data/syncnet_v2.model', help='Path to pretrained SyncNet weights') parser.add_argument('--resume', type=str, default=None, help='Path to checkpoint to resume from') # Training parameters (BULLETPROOF config for 4-5 hour training) parser.add_argument('--epochs', type=int, default=25, help='25 epochs for high accuracy (~4-5 hrs)') parser.add_argument('--batch_size', type=int, default=32, help='32 for memory safety') parser.add_argument('--lr', type=float, default=5e-4, help='Balanced LR for stable training') parser.add_argument('--weight_decay', type=float, default=1e-4) parser.add_argument('--label_smoothing', type=float, default=0.1) parser.add_argument('--dropout', type=float, default=0.2, help='Slightly lower dropout for classification') # Model parameters parser.add_argument('--max_offset', type=int, default=15, help='±15 frames for GRID corpus (31 classes)') parser.add_argument('--embedding_dim', type=int, default=512) parser.add_argument('--num_frames', type=int, default=25) parser.add_argument('--samples_per_video', type=int, default=3, help='3 samples/video for good data augmentation') parser.add_argument('--num_workers', type=int, default=0, help='0 workers for memory safety (no multiprocessing)') parser.add_argument('--cache_features', action='store_true', help='Enable feature caching (uses more RAM but faster)') # Training options parser.add_argument('--freeze_conv', action='store_true', default=True, help='Freeze pretrained conv layers') parser.add_argument('--no_freeze_conv', dest='freeze_conv', action='store_false') parser.add_argument('--unfreeze_epoch', type=int, default=20, help='Epoch to unfreeze conv layers for fine-tuning') args = parser.parse_args() # Setup device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") os.makedirs(args.checkpoint_dir, exist_ok=True) # Create model print("Creating model...") model = StreamSyncFCN_Classification( embedding_dim=args.embedding_dim, max_offset=args.max_offset, pretrained_syncnet_path=args.pretrained if os.path.exists(args.pretrained) else None, auto_load_pretrained=True, dropout=args.dropout ) if args.freeze_conv: print("Conv layers frozen (will unfreeze at epoch {})".format(args.unfreeze_epoch)) model = model.to(device) # Create dataset (caching DISABLED by default for memory safety) print("Loading dataset...") cache_enabled = args.cache_features # Default: False print(f"Feature caching: {'ENABLED (faster but uses RAM)' if cache_enabled else 'DISABLED (memory safe)'}") train_dataset = AVSyncDataset( video_dir=args.data_dir, max_offset=args.max_offset, num_samples_per_video=args.samples_per_video, num_frames=args.num_frames, cache_features=cache_enabled ) train_loader = DataLoader( train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True if device.type == 'cuda' else False, persistent_workers=False, # Disabled for memory safety collate_fn=collate_fn_skip_none ) val_loader = None if args.val_dir and os.path.exists(args.val_dir): val_dataset = AVSyncDataset( video_dir=args.val_dir, max_offset=args.max_offset, num_samples_per_video=2, num_frames=args.num_frames, cache_features=cache_enabled ) val_loader = DataLoader( val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True if device.type == 'cuda' else False, persistent_workers=False, # Disabled for memory safety collate_fn=collate_fn_skip_none ) # Loss and optimizer criterion = create_classification_criterion( max_offset=args.max_offset, label_smoothing=args.label_smoothing ) optimizer = torch.optim.AdamW( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=5) # Resume from checkpoint start_epoch = 0 best_accuracy = 0 if args.resume and os.path.exists(args.resume): print(f"Resuming from {args.resume}") checkpoint = torch.load(args.resume, map_location=device) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] best_accuracy = checkpoint.get('best_accuracy', 0) print(f"Resumed from epoch {start_epoch}, best accuracy: {best_accuracy:.2%}") # Training loop print("\n" + "="*60) print("Starting training...") print("="*60) for epoch in range(start_epoch, args.epochs): print(f"\nEpoch {epoch+1}/{args.epochs}") print("-" * 40) # Unfreeze conv layers after specified epoch if args.freeze_conv and epoch == args.unfreeze_epoch: print("Unfreezing conv layers for fine-tuning...") model.unfreeze_all_layers() # Train start_time = time.time() train_loss, train_acc = train_epoch( model, train_loader, criterion, optimizer, device, args.max_offset ) train_time = time.time() - start_time print(f"Train Loss: {train_loss:.4f}, Accuracy: {train_acc:.2%}, Time: {train_time:.1f}s") # Validate if val_loader: val_loss, val_acc, val_mae = validate( model, val_loader, criterion, device, args.max_offset ) print(f"Val Loss: {val_loss:.4f}, Accuracy: {val_acc:.2%}, MAE: {val_mae:.2f} frames") scheduler.step(val_acc) is_best = val_acc > best_accuracy best_accuracy = max(val_acc, best_accuracy) else: scheduler.step(train_acc) is_best = train_acc > best_accuracy best_accuracy = max(train_acc, best_accuracy) # Save checkpoint checkpoint = { 'epoch': epoch + 1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'train_loss': train_loss, 'train_acc': train_acc, 'best_accuracy': best_accuracy } checkpoint_path = os.path.join(args.checkpoint_dir, f'checkpoint_epoch{epoch+1}.pth') torch.save(checkpoint, checkpoint_path) print(f"Saved checkpoint: {checkpoint_path}") if is_best: best_path = os.path.join(args.checkpoint_dir, 'best.pth') torch.save(checkpoint, best_path) print(f"New best model! Accuracy: {best_accuracy:.2%}") print("\n" + "="*60) print("Training complete!") print(f"Best accuracy: {best_accuracy:.2%}") print("="*60) if __name__ == '__main__': main()