#!/usr/bin/env python # -*- coding: utf-8 -*- """ evaluate_model.py - Comprehensive Evaluation Script for FCN-SyncNet This script evaluates the trained FCN-SyncNet model and generates metrics suitable for documentation and README. Usage: # Evaluate on validation set python evaluate_model.py --model checkpoints_regression/syncnet_fcn_best.pth --data_dir E:/voxceleb2_dataset/VoxCeleb2/dev --num_samples 500 # Quick test on single video python evaluate_model.py --model checkpoints_regression/syncnet_fcn_best.pth --video data/example.avi # Generate full report python evaluate_model.py --model checkpoints_regression/syncnet_fcn_best.pth --data_dir E:/voxceleb2_dataset/VoxCeleb2/dev --full_report Author: R V Abhishek Date: 2025 """ import torch import torch.nn as nn import numpy as np import argparse import os import sys import json import time from datetime import datetime import glob import random import cv2 import subprocess from scipy.io import wavfile import python_speech_features # Import model from SyncNetModel_FCN import StreamSyncFCN, SyncNetFCN class ModelEvaluator: """Evaluator for FCN-SyncNet models.""" def __init__(self, model_path, max_offset=125, use_attention=False, device=None): """ Initialize evaluator. Args: model_path: Path to trained model checkpoint max_offset: Maximum offset in frames (default: 125 = ±5 seconds at 25fps) use_attention: Whether model uses attention device: Device to use (default: auto-detect) """ self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.max_offset = max_offset print(f"Device: {self.device}") print(f"Loading model from: {model_path}") # Load model self.model = StreamSyncFCN( max_offset=max_offset, use_attention=use_attention, pretrained_syncnet_path=None, auto_load_pretrained=False ) # Load checkpoint checkpoint = torch.load(model_path, map_location='cpu') if 'model_state_dict' in checkpoint: self.model.load_state_dict(checkpoint['model_state_dict']) self.checkpoint_info = { 'epoch': checkpoint.get('epoch', 'unknown'), 'metrics': checkpoint.get('metrics', {}) } else: self.model.load_state_dict(checkpoint) self.checkpoint_info = {'epoch': 'unknown', 'metrics': {}} self.model = self.model.to(self.device) self.model.eval() print(f"✓ Model loaded (Epoch: {self.checkpoint_info['epoch']})") # Count parameters total_params = sum(p.numel() for p in self.model.parameters()) trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad) print(f"Total parameters: {total_params:,}") print(f"Trainable parameters: {trainable_params:,}") def extract_audio_mfcc(self, video_path, temp_dir='temp_eval'): """Extract audio and compute MFCC.""" os.makedirs(temp_dir, exist_ok=True) audio_path = os.path.join(temp_dir, 'temp_audio.wav') cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000', '-vn', '-acodec', 'pcm_s16le', audio_path] subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) sample_rate, audio = wavfile.read(audio_path) if len(audio.shape) > 1: audio = audio.mean(axis=1) mfcc = python_speech_features.mfcc(audio, sample_rate, numcep=13) mfcc_tensor = torch.FloatTensor(mfcc.T).unsqueeze(0).unsqueeze(0) if os.path.exists(audio_path): os.remove(audio_path) return mfcc_tensor def extract_video_frames(self, video_path, target_size=(112, 112)): """Extract video frames as tensor.""" cap = cv2.VideoCapture(video_path) frames = [] while True: ret, frame = cap.read() if not ret: break frame = cv2.resize(frame, target_size) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(frame.astype(np.float32) / 255.0) cap.release() if not frames: raise ValueError(f"No frames extracted from {video_path}") frames_array = np.stack(frames, axis=0) video_tensor = torch.FloatTensor(frames_array).permute(3, 0, 1, 2).unsqueeze(0) return video_tensor def evaluate_single_video(self, video_path, ground_truth_offset=0, verbose=True): """ Evaluate a single video. Args: video_path: Path to video file ground_truth_offset: Known offset in frames (for computing error) verbose: Print progress Returns: dict with prediction and metrics """ if verbose: print(f"Evaluating: {video_path}") try: # Extract features mfcc = self.extract_audio_mfcc(video_path) video = self.extract_video_frames(video_path) # Ensure minimum length min_frames = 25 if video.shape[2] < min_frames: if verbose: print(f" Warning: Video too short ({video.shape[2]} frames)") return None # Crop to valid length audio_frames = mfcc.shape[3] // 4 video_frames = video.shape[2] min_length = min(audio_frames, video_frames) video = video[:, :, :min_length, :, :] mfcc = mfcc[:, :, :, :min_length*4] # Run inference start_time = time.time() with torch.no_grad(): mfcc = mfcc.to(self.device) video = video.to(self.device) predicted_offsets, audio_feat, video_feat = self.model(mfcc, video) # Get prediction pred_offset = predicted_offsets.mean().item() inference_time = time.time() - start_time # Compute error error = abs(pred_offset - ground_truth_offset) result = { 'video': os.path.basename(video_path), 'predicted_offset': pred_offset, 'ground_truth_offset': ground_truth_offset, 'absolute_error': error, 'error_seconds': error / 25.0, # Convert to seconds 'inference_time': inference_time, 'video_frames': min_length, } if verbose: print(f" Predicted: {pred_offset:.2f} frames ({pred_offset/25:.3f}s)") print(f" Ground Truth: {ground_truth_offset} frames") print(f" Error: {error:.2f} frames ({error/25:.3f}s)") print(f" Inference time: {inference_time*1000:.1f}ms") return result except Exception as e: if verbose: print(f" Error: {e}") return None def evaluate_dataset(self, data_dir, num_samples=100, offset_range=None, verbose=True): """ Evaluate on a dataset with synthetic offsets. Args: data_dir: Path to dataset directory num_samples: Number of samples to evaluate offset_range: Tuple (min, max) for synthetic offsets (default: ±max_offset) verbose: Print progress Returns: dict with aggregate metrics """ if offset_range is None: offset_range = (-self.max_offset, self.max_offset) # Find video files video_files = glob.glob(os.path.join(data_dir, '**', '*.mp4'), recursive=True) if len(video_files) == 0: print(f"No video files found in {data_dir}") return None print(f"Found {len(video_files)} videos") # Sample videos if len(video_files) > num_samples: video_files = random.sample(video_files, num_samples) print(f"Evaluating {len(video_files)} samples...") print("="*60) results = [] errors = [] inference_times = [] for i, video_path in enumerate(video_files): # Generate random offset (simulating desync) ground_truth = random.randint(offset_range[0], offset_range[1]) result = self.evaluate_single_video( video_path, ground_truth_offset=ground_truth, verbose=(verbose and i % 10 == 0) ) if result: results.append(result) errors.append(result['absolute_error']) inference_times.append(result['inference_time']) # Progress if (i + 1) % 50 == 0: print(f"Progress: {i+1}/{len(video_files)}") # Compute aggregate metrics errors = np.array(errors) inference_times = np.array(inference_times) metrics = { 'num_samples': len(results), 'mae_frames': float(np.mean(errors)), 'mae_seconds': float(np.mean(errors) / 25.0), 'rmse_frames': float(np.sqrt(np.mean(errors**2))), 'std_frames': float(np.std(errors)), 'median_error_frames': float(np.median(errors)), 'max_error_frames': float(np.max(errors)), 'accuracy_1_frame': float(np.mean(errors <= 1) * 100), 'accuracy_3_frames': float(np.mean(errors <= 3) * 100), 'accuracy_1_second': float(np.mean(errors <= 25) * 100), 'avg_inference_time_ms': float(np.mean(inference_times) * 1000), 'max_offset_range': offset_range, } return metrics, results def generate_report(self, metrics, output_path='evaluation_report.json'): """Generate evaluation report.""" report = { 'timestamp': datetime.now().isoformat(), 'model_info': { 'epoch': self.checkpoint_info.get('epoch'), 'training_metrics': self.checkpoint_info.get('metrics', {}), 'max_offset': self.max_offset, }, 'evaluation_metrics': metrics, } with open(output_path, 'w') as f: json.dump(report, f, indent=2) print(f"\nReport saved to: {output_path}") return report def print_metrics_summary(metrics): """Print formatted metrics summary.""" print("\n" + "="*60) print("EVALUATION RESULTS") print("="*60) print(f"\n📊 Sample Statistics:") print(f" Total samples evaluated: {metrics['num_samples']}") print(f"\n📏 Error Metrics:") print(f" Mean Absolute Error (MAE): {metrics['mae_frames']:.2f} frames ({metrics['mae_seconds']:.4f} seconds)") print(f" Root Mean Square Error (RMSE): {metrics['rmse_frames']:.2f} frames") print(f" Standard Deviation: {metrics['std_frames']:.2f} frames") print(f" Median Error: {metrics['median_error_frames']:.2f} frames") print(f" Max Error: {metrics['max_error_frames']:.2f} frames") print(f"\n✅ Accuracy Metrics:") print(f" Within ±1 frame: {metrics['accuracy_1_frame']:.2f}%") print(f" Within ±3 frames: {metrics['accuracy_3_frames']:.2f}%") print(f" Within ±1 second (25 frames): {metrics['accuracy_1_second']:.2f}%") print(f"\n⚡ Performance:") print(f" Avg Inference Time: {metrics['avg_inference_time_ms']:.1f}ms per video") print("\n" + "="*60) def print_readme_metrics(metrics): """Print metrics formatted for README.md.""" print("\n" + "="*60) print("METRICS FOR README.md (Copy below)") print("="*60) print(""" ## Model Performance | Metric | Value | |--------|-------| | Mean Absolute Error (MAE) | {:.2f} frames ({:.4f}s) | | Root Mean Square Error (RMSE) | {:.2f} frames | | Accuracy (±1 frame) | {:.2f}% | | Accuracy (±3 frames) | {:.2f}% | | Accuracy (±1 second) | {:.2f}% | | Average Inference Time | {:.1f}ms | ### Test Configuration - **Test samples**: {} videos - **Max offset range**: ±{} frames (±{:.1f} seconds) - **Device**: CUDA/CPU """.format( metrics['mae_frames'], metrics['mae_seconds'], metrics['rmse_frames'], metrics['accuracy_1_frame'], metrics['accuracy_3_frames'], metrics['accuracy_1_second'], metrics['avg_inference_time_ms'], metrics['num_samples'], metrics['max_offset_range'][1], metrics['max_offset_range'][1] / 25.0 )) def main(): parser = argparse.ArgumentParser(description='Evaluate FCN-SyncNet Model') parser.add_argument('--model', type=str, required=True, help='Path to trained model checkpoint (.pth)') parser.add_argument('--data_dir', type=str, default=None, help='Path to dataset directory for batch evaluation') parser.add_argument('--video', type=str, default=None, help='Path to single video for quick test') parser.add_argument('--num_samples', type=int, default=100, help='Number of samples for dataset evaluation (default: 100)') parser.add_argument('--max_offset', type=int, default=125, help='Max offset in frames (default: 125)') parser.add_argument('--use_attention', action='store_true', help='Use attention model') parser.add_argument('--full_report', action='store_true', help='Generate full JSON report') parser.add_argument('--readme', action='store_true', help='Print metrics formatted for README') parser.add_argument('--output', type=str, default='evaluation_report.json', help='Output path for report') args = parser.parse_args() # Validate args if not args.video and not args.data_dir: parser.error("Please specify either --video or --data_dir") # Initialize evaluator evaluator = ModelEvaluator( model_path=args.model, max_offset=args.max_offset, use_attention=args.use_attention ) print("\n" + "="*60) # Single video evaluation if args.video: print("SINGLE VIDEO EVALUATION") print("="*60) result = evaluator.evaluate_single_video(args.video, verbose=True) if result: print("\n✓ Evaluation complete") # Dataset evaluation elif args.data_dir: print("DATASET EVALUATION") print("="*60) metrics, results = evaluator.evaluate_dataset( args.data_dir, num_samples=args.num_samples, verbose=True ) if metrics: print_metrics_summary(metrics) if args.readme: print_readme_metrics(metrics) if args.full_report: evaluator.generate_report(metrics, args.output) print("\n✓ Done!") if __name__ == '__main__': main()