Spaces:
Running
Running
File size: 20,906 Bytes
579f772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Training script for FCN-SyncNet CLASSIFICATION model.
Key differences from regression training:
- Uses CrossEntropyLoss instead of MSE
- Treats offset as discrete classes (-15 to +15 = 31 classes)
- Tracks classification accuracy as primary metric
- Avoids regression-to-mean problem
Usage:
python train_syncnet_fcn_classification.py --data_dir /path/to/dataset
python train_syncnet_fcn_classification.py --data_dir /path/to/dataset --epochs 50 --lr 1e-4
"""
import os
import sys
import argparse
import time
import gc
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR, ReduceLROnPlateau
import subprocess
from scipy.io import wavfile
import python_speech_features
import cv2
from pathlib import Path
from SyncNetModel_FCN_Classification import (
SyncNetFCN_Classification,
StreamSyncFCN_Classification,
create_classification_criterion,
train_step_classification,
validate_classification
)
class AVSyncDataset(Dataset):
"""
Dataset for audio-video sync classification.
Generates training samples with artificial offsets for data augmentation.
"""
def __init__(self, video_dir, max_offset=15, num_samples_per_video=10,
frame_size=(112, 112), num_frames=25, cache_features=True):
"""
Args:
video_dir: Directory containing video files
max_offset: Maximum offset in frames (creates 2*max_offset+1 classes)
num_samples_per_video: Number of samples to generate per video
frame_size: Target frame size (H, W)
num_frames: Number of frames per sample
cache_features: Cache extracted features for faster training
"""
self.video_dir = video_dir
self.max_offset = max_offset
self.num_samples_per_video = num_samples_per_video
self.frame_size = frame_size
self.num_frames = num_frames
self.cache_features = cache_features
self.feature_cache = {}
# Find all video files
self.video_files = []
for ext in ['*.mp4', '*.avi', '*.mov', '*.mkv', '*.mpg', '*.mpeg']:
self.video_files.extend(Path(video_dir).glob(f'**/{ext}'))
if not self.video_files:
raise ValueError(f"No video files found in {video_dir}")
print(f"Found {len(self.video_files)} video files")
# Generate sample list (video_idx, offset)
self.samples = []
for vid_idx in range(len(self.video_files)):
for _ in range(num_samples_per_video):
# Random offset within range
offset = np.random.randint(-max_offset, max_offset + 1)
self.samples.append((vid_idx, offset))
print(f"Generated {len(self.samples)} training samples")
def __len__(self):
return len(self.samples)
def extract_features(self, video_path):
"""Extract audio MFCC and video frames."""
video_path = str(video_path)
# Check cache
if self.cache_features and video_path in self.feature_cache:
return self.feature_cache[video_path]
# Extract audio
temp_audio = f'temp_audio_{os.getpid()}_{np.random.randint(10000)}.wav'
try:
cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000',
'-vn', '-acodec', 'pcm_s16le', temp_audio]
subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
sample_rate, audio = wavfile.read(temp_audio)
# Validate audio length (need at least num_frames * 4 MFCC frames)
min_audio_samples = (self.num_frames * 4 + self.max_offset * 4) * 160 # 160 samples per MFCC frame at 16kHz
if len(audio) < min_audio_samples:
raise ValueError(f"Audio too short: {len(audio)} samples, need {min_audio_samples}")
mfcc = python_speech_features.mfcc(audio, sample_rate, numcep=13)
# Validate MFCC length
min_mfcc_frames = self.num_frames * 4 + abs(self.max_offset) * 4
if len(mfcc) < min_mfcc_frames:
raise ValueError(f"MFCC too short: {len(mfcc)} frames, need {min_mfcc_frames}")
finally:
if os.path.exists(temp_audio):
os.remove(temp_audio)
# Extract video frames
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, self.frame_size)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame.astype(np.float32) / 255.0)
cap.release()
if len(frames) == 0:
raise ValueError(f"No frames extracted from {video_path}")
result = (mfcc, np.stack(frames))
# Cache if enabled
if self.cache_features:
self.feature_cache[video_path] = result
return result
def apply_offset(self, mfcc, frames, offset):
"""
Apply temporal offset between audio and video.
Positive offset: audio is ahead (shift audio forward / video backward)
Negative offset: video is ahead (shift video forward / audio backward)
"""
# MFCC is at 100Hz (10ms per frame), video at 25fps (40ms per frame)
# 1 video frame = 4 MFCC frames
mfcc_offset = offset * 4
num_video_frames = min(self.num_frames, len(frames) - abs(offset))
num_mfcc_frames = num_video_frames * 4
if offset >= 0:
# Audio ahead: start audio later
video_start = 0
mfcc_start = mfcc_offset
else:
# Video ahead: start video later
video_start = abs(offset)
mfcc_start = 0
# Extract aligned segments
video_segment = frames[video_start:video_start + num_video_frames]
mfcc_segment = mfcc[mfcc_start:mfcc_start + num_mfcc_frames]
# Pad if needed
if len(video_segment) < self.num_frames:
pad_frames = self.num_frames - len(video_segment)
video_segment = np.concatenate([
video_segment,
np.repeat(video_segment[-1:], pad_frames, axis=0)
], axis=0)
target_mfcc_len = self.num_frames * 4
if len(mfcc_segment) < target_mfcc_len:
pad_mfcc = target_mfcc_len - len(mfcc_segment)
mfcc_segment = np.concatenate([
mfcc_segment,
np.repeat(mfcc_segment[-1:], pad_mfcc, axis=0)
], axis=0)
return mfcc_segment[:target_mfcc_len], video_segment[:self.num_frames]
def __getitem__(self, idx):
vid_idx, offset = self.samples[idx]
video_path = self.video_files[vid_idx]
try:
mfcc, frames = self.extract_features(video_path)
mfcc, frames = self.apply_offset(mfcc, frames, offset)
# Convert to tensors
audio_tensor = torch.FloatTensor(mfcc.T).unsqueeze(0) # [1, 13, T]
video_tensor = torch.FloatTensor(frames).permute(3, 0, 1, 2) # [3, T, H, W]
offset_tensor = torch.tensor(offset, dtype=torch.long)
return audio_tensor, video_tensor, offset_tensor
except Exception as e:
# Return None for bad samples (filtered by collate_fn)
return None
def collate_fn_skip_none(batch):
"""Custom collate function that skips None and invalid samples."""
# Filter out None samples
batch = [b for b in batch if b is not None]
# Filter out samples with empty tensors (0-length MFCC from videos without audio)
valid_batch = []
for b in batch:
audio, video, offset = b
# Check if audio and video have valid sizes
if audio.size(-1) > 0 and video.size(1) > 0:
valid_batch.append(b)
if len(valid_batch) == 0:
# Return None if all samples are bad
return None
# Stack valid samples
audio = torch.stack([b[0] for b in valid_batch])
video = torch.stack([b[1] for b in valid_batch])
offset = torch.stack([b[2] for b in valid_batch])
return audio, video, offset
def train_epoch(model, dataloader, criterion, optimizer, device, max_offset):
"""Train for one epoch with bulletproof error handling."""
model.train()
total_loss = 0
total_correct = 0
total_samples = 0
skipped_batches = 0
for batch_idx, batch in enumerate(dataloader):
try:
# Skip None batches (all samples were invalid)
if batch is None:
skipped_batches += 1
continue
audio, video, target_offset = batch
audio = audio.to(device)
video = video.to(device)
target_class = (target_offset + max_offset).long().to(device)
optimizer.zero_grad()
# Forward pass
if hasattr(model, 'fcn_model'):
class_logits, _, _ = model(audio, video)
else:
class_logits, _, _ = model(audio, video)
# Compute loss
loss = criterion(class_logits, target_class)
# Backward pass
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
# Track metrics
total_loss += loss.item() * audio.size(0)
predicted_class = class_logits.argmax(dim=1)
total_correct += (predicted_class == target_class).sum().item()
total_samples += audio.size(0)
if batch_idx % 10 == 0:
print(f" Batch {batch_idx}/{len(dataloader)}: Loss={loss.item():.4f}, "
f"Acc={(predicted_class == target_class).float().mean().item():.2%}")
# Memory cleanup every 50 batches
if batch_idx % 50 == 0 and batch_idx > 0:
del audio, video, target_offset, target_class, class_logits, loss
if device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
except RuntimeError as e:
# Handle OOM or other runtime errors gracefully
print(f" [WARNING] Batch {batch_idx} failed: {str(e)[:100]}")
skipped_batches += 1
if device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
continue
except Exception as e:
# Handle any other errors
print(f" [WARNING] Batch {batch_idx} error: {str(e)[:100]}")
skipped_batches += 1
continue
if skipped_batches > 0:
print(f" [INFO] Skipped {skipped_batches} batches due to errors")
if total_samples == 0:
return 0.0, 0.0
return total_loss / total_samples, total_correct / total_samples
def validate(model, dataloader, criterion, device, max_offset):
"""Validate model."""
model.eval()
total_loss = 0
total_correct = 0
total_samples = 0
total_error = 0
with torch.no_grad():
for audio, video, target_offset in dataloader:
audio = audio.to(device)
video = video.to(device)
target_class = (target_offset + max_offset).long().to(device)
if hasattr(model, 'fcn_model'):
class_logits, _, _ = model(audio, video)
else:
class_logits, _, _ = model(audio, video)
loss = criterion(class_logits, target_class)
total_loss += loss.item() * audio.size(0)
predicted_class = class_logits.argmax(dim=1)
total_correct += (predicted_class == target_class).sum().item()
total_samples += audio.size(0)
# Mean absolute error in frames
predicted_offset = predicted_class - max_offset
actual_offset = target_class - max_offset
total_error += (predicted_offset - actual_offset).abs().sum().item()
avg_loss = total_loss / total_samples
accuracy = total_correct / total_samples
mae = total_error / total_samples
return avg_loss, accuracy, mae
def main():
parser = argparse.ArgumentParser(description='Train FCN-SyncNet Classification Model')
parser.add_argument('--data_dir', type=str, required=True,
help='Directory containing training videos')
parser.add_argument('--val_dir', type=str, default=None,
help='Directory containing validation videos (optional)')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints_classification',
help='Directory to save checkpoints')
parser.add_argument('--pretrained', type=str, default='data/syncnet_v2.model',
help='Path to pretrained SyncNet weights')
parser.add_argument('--resume', type=str, default=None,
help='Path to checkpoint to resume from')
# Training parameters (BULLETPROOF config for 4-5 hour training)
parser.add_argument('--epochs', type=int, default=25,
help='25 epochs for high accuracy (~4-5 hrs)')
parser.add_argument('--batch_size', type=int, default=32,
help='32 for memory safety')
parser.add_argument('--lr', type=float, default=5e-4,
help='Balanced LR for stable training')
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--label_smoothing', type=float, default=0.1)
parser.add_argument('--dropout', type=float, default=0.2,
help='Slightly lower dropout for classification')
# Model parameters
parser.add_argument('--max_offset', type=int, default=15,
help='±15 frames for GRID corpus (31 classes)')
parser.add_argument('--embedding_dim', type=int, default=512)
parser.add_argument('--num_frames', type=int, default=25)
parser.add_argument('--samples_per_video', type=int, default=3,
help='3 samples/video for good data augmentation')
parser.add_argument('--num_workers', type=int, default=0,
help='0 workers for memory safety (no multiprocessing)')
parser.add_argument('--cache_features', action='store_true',
help='Enable feature caching (uses more RAM but faster)')
# Training options
parser.add_argument('--freeze_conv', action='store_true', default=True,
help='Freeze pretrained conv layers')
parser.add_argument('--no_freeze_conv', dest='freeze_conv', action='store_false')
parser.add_argument('--unfreeze_epoch', type=int, default=20,
help='Epoch to unfreeze conv layers for fine-tuning')
args = parser.parse_args()
# Setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
os.makedirs(args.checkpoint_dir, exist_ok=True)
# Create model
print("Creating model...")
model = StreamSyncFCN_Classification(
embedding_dim=args.embedding_dim,
max_offset=args.max_offset,
pretrained_syncnet_path=args.pretrained if os.path.exists(args.pretrained) else None,
auto_load_pretrained=True,
dropout=args.dropout
)
if args.freeze_conv:
print("Conv layers frozen (will unfreeze at epoch {})".format(args.unfreeze_epoch))
model = model.to(device)
# Create dataset (caching DISABLED by default for memory safety)
print("Loading dataset...")
cache_enabled = args.cache_features # Default: False
print(f"Feature caching: {'ENABLED (faster but uses RAM)' if cache_enabled else 'DISABLED (memory safe)'}")
train_dataset = AVSyncDataset(
video_dir=args.data_dir,
max_offset=args.max_offset,
num_samples_per_video=args.samples_per_video,
num_frames=args.num_frames,
cache_features=cache_enabled
)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True if device.type == 'cuda' else False,
persistent_workers=False, # Disabled for memory safety
collate_fn=collate_fn_skip_none
)
val_loader = None
if args.val_dir and os.path.exists(args.val_dir):
val_dataset = AVSyncDataset(
video_dir=args.val_dir,
max_offset=args.max_offset,
num_samples_per_video=2,
num_frames=args.num_frames,
cache_features=cache_enabled
)
val_loader = DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True if device.type == 'cuda' else False,
persistent_workers=False, # Disabled for memory safety
collate_fn=collate_fn_skip_none
)
# Loss and optimizer
criterion = create_classification_criterion(
max_offset=args.max_offset,
label_smoothing=args.label_smoothing
)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay
)
scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=5)
# Resume from checkpoint
start_epoch = 0
best_accuracy = 0
if args.resume and os.path.exists(args.resume):
print(f"Resuming from {args.resume}")
checkpoint = torch.load(args.resume, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
best_accuracy = checkpoint.get('best_accuracy', 0)
print(f"Resumed from epoch {start_epoch}, best accuracy: {best_accuracy:.2%}")
# Training loop
print("\n" + "="*60)
print("Starting training...")
print("="*60)
for epoch in range(start_epoch, args.epochs):
print(f"\nEpoch {epoch+1}/{args.epochs}")
print("-" * 40)
# Unfreeze conv layers after specified epoch
if args.freeze_conv and epoch == args.unfreeze_epoch:
print("Unfreezing conv layers for fine-tuning...")
model.unfreeze_all_layers()
# Train
start_time = time.time()
train_loss, train_acc = train_epoch(
model, train_loader, criterion, optimizer, device, args.max_offset
)
train_time = time.time() - start_time
print(f"Train Loss: {train_loss:.4f}, Accuracy: {train_acc:.2%}, Time: {train_time:.1f}s")
# Validate
if val_loader:
val_loss, val_acc, val_mae = validate(
model, val_loader, criterion, device, args.max_offset
)
print(f"Val Loss: {val_loss:.4f}, Accuracy: {val_acc:.2%}, MAE: {val_mae:.2f} frames")
scheduler.step(val_acc)
is_best = val_acc > best_accuracy
best_accuracy = max(val_acc, best_accuracy)
else:
scheduler.step(train_acc)
is_best = train_acc > best_accuracy
best_accuracy = max(train_acc, best_accuracy)
# Save checkpoint
checkpoint = {
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_loss': train_loss,
'train_acc': train_acc,
'best_accuracy': best_accuracy
}
checkpoint_path = os.path.join(args.checkpoint_dir, f'checkpoint_epoch{epoch+1}.pth')
torch.save(checkpoint, checkpoint_path)
print(f"Saved checkpoint: {checkpoint_path}")
if is_best:
best_path = os.path.join(args.checkpoint_dir, 'best.pth')
torch.save(checkpoint, best_path)
print(f"New best model! Accuracy: {best_accuracy:.2%}")
print("\n" + "="*60)
print("Training complete!")
print(f"Best accuracy: {best_accuracy:.2%}")
print("="*60)
if __name__ == '__main__':
main()
|