File size: 12,292 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#!/usr/bin/env python
"""
Continue training from epoch 2 checkpoint.

This script resumes training from checkpoints/syncnet_fcn_epoch2.pth
which uses SyncNet_TransferLearning with 31-class classification (±15 frames).

Usage:
    python train_continue_epoch2.py --data_dir "E:\voxc2\vox2_dev_mp4_partaa~\dev\mp4" --hours 5
"""

import os
import sys
import argparse
import time
import numpy as np
from pathlib import Path

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import cv2
import subprocess
from scipy.io import wavfile
import python_speech_features

from SyncNet_TransferLearning import SyncNet_TransferLearning


class AVSyncDataset(Dataset):
    """Dataset for audio-video sync classification."""
    
    def __init__(self, video_dir, max_offset=15, num_samples_per_video=2,
                 frame_size=(112, 112), num_frames=25, max_videos=None):
        self.video_dir = video_dir
        self.max_offset = max_offset
        self.num_samples_per_video = num_samples_per_video
        self.frame_size = frame_size
        self.num_frames = num_frames
        
        # Find all video files
        self.video_files = []
        for ext in ['*.mp4', '*.avi', '*.mov', '*.mkv']:
            self.video_files.extend(Path(video_dir).glob(f'**/{ext}'))
        
        # Limit number of videos if specified
        if max_videos and len(self.video_files) > max_videos:
            np.random.shuffle(self.video_files)
            self.video_files = self.video_files[:max_videos]
        
        if not self.video_files:
            raise ValueError(f"No video files found in {video_dir}")
        
        print(f"Using {len(self.video_files)} video files")
        
        # Generate sample list
        self.samples = []
        for vid_idx in range(len(self.video_files)):
            for _ in range(num_samples_per_video):
                offset = np.random.randint(-max_offset, max_offset + 1)
                self.samples.append((vid_idx, offset))
        
        print(f"Generated {len(self.samples)} training samples")
    
    def __len__(self):
        return len(self.samples)
    
    def extract_features(self, video_path):
        """Extract audio MFCC and video frames."""
        video_path = str(video_path)
        
        # Extract audio
        temp_audio = f'temp_audio_{os.getpid()}_{np.random.randint(10000)}.wav'
        try:
            cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000',
                   '-vn', '-acodec', 'pcm_s16le', temp_audio]
            subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
            
            sample_rate, audio = wavfile.read(temp_audio)
            
            # Validate audio length
            min_audio_samples = (self.num_frames * 4 + self.max_offset * 4) * 160
            if len(audio) < min_audio_samples:
                raise ValueError(f"Audio too short: {len(audio)} samples")
            
            mfcc = python_speech_features.mfcc(audio, sample_rate, numcep=13)
            
            min_mfcc_frames = self.num_frames * 4 + abs(self.max_offset) * 4
            if len(mfcc) < min_mfcc_frames:
                raise ValueError(f"MFCC too short: {len(mfcc)} frames")
        finally:
            if os.path.exists(temp_audio):
                os.remove(temp_audio)
        
        # Extract video frames
        cap = cv2.VideoCapture(video_path)
        frames = []
        while len(frames) < self.num_frames + abs(self.max_offset) + 10:
            ret, frame = cap.read()
            if not ret:
                break
            frame = cv2.resize(frame, self.frame_size)
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(frame.astype(np.float32) / 255.0)
        cap.release()
        
        if len(frames) < self.num_frames + abs(self.max_offset):
            raise ValueError(f"Video too short: {len(frames)} frames")
        
        return mfcc, np.stack(frames)
    
    def apply_offset(self, mfcc, frames, offset):
        """Apply temporal offset between audio and video."""
        mfcc_offset = offset * 4
        
        num_video_frames = min(self.num_frames, len(frames) - abs(offset))
        num_mfcc_frames = num_video_frames * 4
        
        if offset >= 0:
            video_start = 0
            mfcc_start = mfcc_offset
        else:
            video_start = abs(offset)
            mfcc_start = 0
        
        video_segment = frames[video_start:video_start + num_video_frames]
        mfcc_segment = mfcc[mfcc_start:mfcc_start + num_mfcc_frames]
        
        # Pad if needed
        if len(video_segment) < self.num_frames:
            pad_frames = self.num_frames - len(video_segment)
            video_segment = np.concatenate([
                video_segment,
                np.repeat(video_segment[-1:], pad_frames, axis=0)
            ], axis=0)
        
        target_mfcc_len = self.num_frames * 4
        if len(mfcc_segment) < target_mfcc_len:
            pad_mfcc = target_mfcc_len - len(mfcc_segment)
            mfcc_segment = np.concatenate([
                mfcc_segment,
                np.repeat(mfcc_segment[-1:], pad_mfcc, axis=0)
            ], axis=0)
        
        return mfcc_segment[:target_mfcc_len], video_segment[:self.num_frames]
    
    def __getitem__(self, idx):
        vid_idx, offset = self.samples[idx]
        video_path = self.video_files[vid_idx]
        
        try:
            mfcc, frames = self.extract_features(video_path)
            mfcc, frames = self.apply_offset(mfcc, frames, offset)
            
            audio_tensor = torch.FloatTensor(mfcc.T).unsqueeze(0)  # [1, 13, T]
            video_tensor = torch.FloatTensor(frames).permute(3, 0, 1, 2)  # [3, T, H, W]
            offset_tensor = torch.tensor(offset, dtype=torch.long)
            
            return audio_tensor, video_tensor, offset_tensor
        except Exception as e:
            return None


def collate_fn_skip_none(batch):
    """Skip None samples."""
    batch = [b for b in batch if b is not None]
    if len(batch) == 0:
        return None
    
    audio = torch.stack([b[0] for b in batch])
    video = torch.stack([b[1] for b in batch])
    offset = torch.stack([b[2] for b in batch])
    return audio, video, offset


def train_epoch(model, dataloader, criterion, optimizer, device, max_offset):
    """Train for one epoch."""
    model.train()
    total_loss = 0
    total_correct = 0
    total_samples = 0
    
    for batch_idx, batch in enumerate(dataloader):
        if batch is None:
            continue
        
        audio, video, target_offset = batch
        audio = audio.to(device)
        video = video.to(device)
        target_class = (target_offset + max_offset).long().to(device)
        
        optimizer.zero_grad()
        
        # Forward pass
        sync_probs, _, _ = model(audio, video)
        
        # Global average pooling over time
        sync_logits = torch.log(sync_probs + 1e-8).mean(dim=2)  # [B, 31]
        
        # Compute loss
        loss = criterion(sync_logits, target_class)
        
        # Backward pass
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
        optimizer.step()
        
        # Track metrics
        total_loss += loss.item() * audio.size(0)
        predicted_class = sync_logits.argmax(dim=1)
        total_correct += (predicted_class == target_class).sum().item()
        total_samples += audio.size(0)
        
        if batch_idx % 10 == 0:
            acc = 100.0 * total_correct / total_samples if total_samples > 0 else 0
            print(f"  Batch {batch_idx}/{len(dataloader)}: Loss={loss.item():.4f}, Acc={acc:.2f}%")
    
    return total_loss / total_samples, total_correct / total_samples


def main():
    parser = argparse.ArgumentParser(description='Continue training from epoch 2')
    parser.add_argument('--data_dir', type=str, required=True)
    parser.add_argument('--checkpoint', type=str, default='checkpoints/syncnet_fcn_epoch2.pth')
    parser.add_argument('--output_dir', type=str, default='checkpoints')
    parser.add_argument('--hours', type=float, default=5.0, help='Training time in hours')
    parser.add_argument('--batch_size', type=int, default=32)
    parser.add_argument('--lr', type=float, default=1e-4)
    parser.add_argument('--max_videos', type=int, default=None, 
                       help='Limit number of videos (for faster training)')
    
    args = parser.parse_args()
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")
    
    max_offset = 15  # ±15 frames, 31 classes
    
    # Create model
    print("Creating model...")
    model = SyncNet_TransferLearning(
        video_backbone='fcn',
        audio_backbone='fcn', 
        embedding_dim=512,
        max_offset=max_offset,
        freeze_backbone=False
    )
    
    # Load checkpoint
    print(f"Loading checkpoint: {args.checkpoint}")
    checkpoint = torch.load(args.checkpoint, map_location=device)
    
    # Load model state
    model_state = checkpoint['model_state_dict']
    # Remove 'fcn_model.' prefix if present
    new_state = {}
    for k, v in model_state.items():
        if k.startswith('fcn_model.'):
            new_state[k[10:]] = v  # Remove 'fcn_model.' prefix
        else:
            new_state[k] = v
    
    model.load_state_dict(new_state, strict=False)
    start_epoch = checkpoint.get('epoch', 2)
    print(f"Resuming from epoch {start_epoch}")
    
    model = model.to(device)
    
    # Dataset
    print("Loading dataset...")
    dataset = AVSyncDataset(
        video_dir=args.data_dir,
        max_offset=max_offset,
        num_samples_per_video=2,
        max_videos=args.max_videos
    )
    
    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=0,
        collate_fn=collate_fn_skip_none,
        pin_memory=True
    )
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-4)
    
    # Training loop with time limit
    os.makedirs(args.output_dir, exist_ok=True)
    
    max_seconds = args.hours * 3600
    start_time = time.time()
    epoch = start_epoch
    best_acc = 0
    
    print(f"\n{'='*60}")
    print(f"Starting training for {args.hours} hours...")
    print(f"{'='*60}")
    
    while True:
        elapsed = time.time() - start_time
        remaining = max_seconds - elapsed
        
        if remaining <= 0:
            print(f"\nTime limit reached ({args.hours} hours)")
            break
        
        epoch += 1
        print(f"\nEpoch {epoch} (Time remaining: {remaining/3600:.2f} hours)")
        print("-" * 40)
        
        train_loss, train_acc = train_epoch(
            model, dataloader, criterion, optimizer, device, max_offset
        )
        
        print(f"Epoch {epoch}: Loss={train_loss:.4f}, Acc={100*train_acc:.2f}%")
        
        # Save checkpoint
        checkpoint_path = os.path.join(args.output_dir, f'syncnet_fcn_epoch{epoch}.pth')
        torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'loss': train_loss,
            'accuracy': train_acc * 100,
        }, checkpoint_path)
        print(f"Saved: {checkpoint_path}")
        
        # Save best
        if train_acc > best_acc:
            best_acc = train_acc
            best_path = os.path.join(args.output_dir, 'syncnet_fcn_best.pth')
            torch.save({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'loss': train_loss,
                'accuracy': train_acc * 100,
            }, best_path)
            print(f"New best model saved: {best_path}")
    
    print(f"\n{'='*60}")
    print(f"Training complete!")
    print(f"Final epoch: {epoch}")
    print(f"Best accuracy: {100*best_acc:.2f}%")
    print(f"{'='*60}")


if __name__ == '__main__':
    main()