File size: 11,169 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
class Logger:
    def __init__(self, level="INFO", realtime=False):
        self.levels = {"ERROR": 0, "WARNING": 1, "INFO": 2}
        self.realtime = realtime
        self.level = "ERROR" if realtime else level

    def log(self, msg, level="INFO"):
        if self.levels[level] <= self.levels[self.level]:
            print(f"[{level}] {msg}")

    def info(self, msg):
        self.log(msg, "INFO")

    def warning(self, msg):
        self.log(msg, "WARNING")

    def error(self, msg):
        self.log(msg, "ERROR")
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
run_fcn_pipeline.py

Pipeline for Fully Convolutional SyncNet (FCN-SyncNet) AV Sync Detection
=======================================================================

This script demonstrates how to use the improved StreamSyncFCN model for audio-video synchronization detection on video files or streams.
It handles preprocessing, buffering, and model inference, and outputs sync offset/confidence for each input.

Usage:
    python run_fcn_pipeline.py --video path/to/video.mp4 [--pretrained path/to/weights] [--window_size 25] [--stride 5] [--buffer_size 100] [--use_attention] [--trace]

Requirements:
    - Python 3.x
    - PyTorch
    - OpenCV
    - ffmpeg (installed and in PATH)
    - python_speech_features
    - numpy, scipy
    - SyncNetModel_FCN.py in the same directory or PYTHONPATH

Author: R V Abhishek
"""

import argparse
from SyncNetModel_FCN import StreamSyncFCN
import os


def main():
    parser = argparse.ArgumentParser(description="FCN SyncNet AV Sync Pipeline")
    parser.add_argument('--video', type=str, help='Path to input video file')
    parser.add_argument('--folder', type=str, help='Path to folder containing video files (batch mode)')
    parser.add_argument('--pretrained', type=str, default=None, help='Path to pretrained SyncNet weights (optional)')
    parser.add_argument('--window_size', type=int, default=25, help='Frames per window (default: 25)')
    parser.add_argument('--stride', type=int, default=5, help='Window stride (default: 5)')
    parser.add_argument('--buffer_size', type=int, default=100, help='Temporal buffer size (default: 100)')
    parser.add_argument('--use_attention', action='store_true', help='Use attention model (default: False)')
    parser.add_argument('--trace', action='store_true', help='Return per-window trace (default: False)')
    parser.add_argument('--temp_dir', type=str, default='temp', help='Temporary directory for audio extraction')
    parser.add_argument('--target_size', type=int, nargs=2, default=[112, 112], help='Target video frame size (HxW)')
    parser.add_argument('--realtime', action='store_true', help='Enable real-time mode (minimal checks/logging)')
    parser.add_argument('--keep_temp', action='store_true', help='Keep temporary files for debugging (default: False)')
    parser.add_argument('--summary', action='store_true', help='Print summary statistics for batch mode (default: False)')
    args = parser.parse_args()

    logger = Logger(realtime=args.realtime)
    # Buffer/latency awareness and user guidance
    frame_rate = 25  # Default, can be parameterized if needed
    effective_latency_frames = args.window_size + (args.buffer_size - 1) * args.stride
    effective_latency_sec = effective_latency_frames / frame_rate
    if not args.realtime:
        logger.info("")
        logger.info("Buffer/Latency Settings:")
        logger.info(f"  Window size: {args.window_size} frames")
        logger.info(f"  Stride: {args.stride} frames")
        logger.info(f"  Buffer size: {args.buffer_size} windows")
        logger.info(f"  Effective latency: {effective_latency_frames} frames (~{effective_latency_sec:.2f} sec @ {frame_rate} FPS)")
        if effective_latency_sec > 2.0:
            logger.warning("High effective latency. Consider reducing buffer size or stride for real-time applications.")

    import shutil
    import glob
    import csv
    temp_cleanup_needed = not args.keep_temp

    def process_one_video(video_path):
        # Real-time compatible input quality checks (sample only first few frames/samples, or skip if --realtime)
        if not args.realtime:
            import numpy as np
            def check_video_audio_quality_realtime(video_path, temp_dir, target_size):
                # Check first few video frames
                import cv2
                cap = cv2.VideoCapture(video_path)
                frame_count = 0
                max_check = 10
                while frame_count < max_check:
                    ret, frame = cap.read()
                    if not ret:
                        break
                    frame_count += 1
                cap.release()
                if frame_count < 3:
                    logger.warning(f"Very few video frames extracted in first {max_check} frames ({frame_count}). Results may be unreliable.")

                # Check short audio segment
                import subprocess, os
                audio_path = os.path.join(temp_dir, 'temp_audio.wav')
                cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000', '-vn', '-t', '0.5', '-acodec', 'pcm_s16le', audio_path]
                try:
                    subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
                    from scipy.io import wavfile
                    sr, audio = wavfile.read(audio_path)
                    if np.abs(audio).mean() < 1e-2:
                        logger.warning("Audio appears to be silent or very low energy in first 0.5s. Results may be unreliable.")
                except Exception:
                    logger.warning("Could not extract audio for quality check.")
                if os.path.exists(audio_path):
                    os.remove(audio_path)

            check_video_audio_quality_realtime(video_path, args.temp_dir, tuple(args.target_size))

        try:
            result = model.process_video_file(
                video_path=video_path,
                return_trace=args.trace,
                temp_dir=args.temp_dir,
                target_size=tuple(args.target_size),
                verbose=not args.realtime
            )
        except Exception as e:
            logger.error(f"Failed to process video file: {e}")
            if os.path.exists(args.temp_dir) and temp_cleanup_needed:
                logger.info(f"Cleaning up temp directory: {args.temp_dir}")
                shutil.rmtree(args.temp_dir, ignore_errors=True)
            return None

        # Check for empty or mismatched audio/video after extraction
        if result is None:
            logger.error("No result returned from model. Possible extraction failure.")
            if os.path.exists(args.temp_dir) and temp_cleanup_needed:
                logger.info(f"Cleaning up temp directory: {args.temp_dir}")
                shutil.rmtree(args.temp_dir, ignore_errors=True)
            return None

        if args.trace:
            offset, conf, trace = result
            logger.info("")
            logger.info(f"Final Offset: {offset:.2f} frames, Confidence: {conf:.3f}")
            logger.info("Trace (per window):")
            for i, (o, c, t) in enumerate(zip(trace['offsets'], trace['confidences'], trace['timestamps'])):
                logger.info(f"  Window {i}: Offset={o:.2f}, Confidence={c:.3f}, StartFrame={t}")
        else:
            offset, conf = result
            logger.info("")
            logger.info(f"Final Offset: {offset:.2f} frames, Confidence: {conf:.3f}")

        # Clean up temp directory unless --keep_temp is set
        if os.path.exists(args.temp_dir) and temp_cleanup_needed:
            if not args.realtime:
                # Print temp dir size before cleanup
                def get_dir_size(path):
                    total = 0
                    for dirpath, dirnames, filenames in os.walk(path):
                        for f in filenames:
                            fp = os.path.join(dirpath, f)
                            if os.path.isfile(fp):
                                total += os.path.getsize(fp)
                    return total
                size_mb = get_dir_size(args.temp_dir) / (1024*1024)
                logger.info(f"Cleaning up temp directory: {args.temp_dir} (size: {size_mb:.2f} MB)")
            shutil.rmtree(args.temp_dir, ignore_errors=True)
        return (offset, conf) if result is not None else None

    # Instantiate the model (once for all videos)
    model = StreamSyncFCN(
        window_size=args.window_size,
        stride=args.stride,
        buffer_size=args.buffer_size,
        use_attention=args.use_attention,
        pretrained_syncnet_path=args.pretrained,
        auto_load_pretrained=bool(args.pretrained)
    )

    # Batch/folder mode
    if args.folder:
        video_files = sorted(glob.glob(os.path.join(args.folder, '*.mp4')) +
                             glob.glob(os.path.join(args.folder, '*.avi')) +
                             glob.glob(os.path.join(args.folder, '*.mov')) +
                             glob.glob(os.path.join(args.folder, '*.mkv')))
        logger.info(f"Found {len(video_files)} video files in {args.folder}")
        results = []
        for video_path in video_files:
            logger.info(f"\nProcessing: {video_path}")
            res = process_one_video(video_path)
            if res is not None:
                offset, conf = res
                results.append({'video': os.path.basename(video_path), 'offset': offset, 'confidence': conf})
            else:
                results.append({'video': os.path.basename(video_path), 'offset': None, 'confidence': None})
        # Save results to CSV
        csv_path = os.path.join(args.folder, 'syncnet_fcn_results.csv')
        with open(csv_path, 'w', newline='') as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=['video', 'offset', 'confidence'])
            writer.writeheader()
            for row in results:
                writer.writerow(row)
        logger.info(f"\nBatch processing complete. Results saved to {csv_path}")

        # Print summary statistics if requested
        if args.summary:
            valid_offsets = [r['offset'] for r in results if r['offset'] is not None]
            valid_confs = [r['confidence'] for r in results if r['confidence'] is not None]
            if valid_offsets:
                import numpy as np
                logger.info(f"Summary: {len(valid_offsets)} valid results")
                logger.info(f"  Offset: mean={np.mean(valid_offsets):.2f}, std={np.std(valid_offsets):.2f}, min={np.min(valid_offsets):.2f}, max={np.max(valid_offsets):.2f}")
                logger.info(f"  Confidence: mean={np.mean(valid_confs):.3f}, std={np.std(valid_confs):.3f}, min={np.min(valid_confs):.3f}, max={np.max(valid_confs):.3f}")
            else:
                logger.warning("No valid results for summary statistics.")
        return

    # Single video mode
    if not args.video:
        logger.error("You must specify either --video or --folder.")
        return
    logger.info(f"\nProcessing: {args.video}")
    process_one_video(args.video)

if __name__ == "__main__":
    main()