File size: 9,204 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Generate Demo Video for FCN-SyncNet

Creates demonstration videos showing sync detection with different offsets.
Outputs a comparison video and terminal recording for presentation.

Usage:
    python generate_demo.py
    python generate_demo.py --output demo_output/

Author: R-V-Abhishek
"""

import argparse
import os
import subprocess
import sys
import time

import torch


def create_offset_videos(source_video, output_dir, offsets=[0, 5, 12]):
    """Create test videos with known audio offsets."""
    os.makedirs(output_dir, exist_ok=True)
    
    created = []
    for offset in offsets:
        if offset == 0:
            # Copy original
            output_path = os.path.join(output_dir, 'test_offset_0.avi')
            cmd = ['ffmpeg', '-y', '-i', source_video, '-c', 'copy', output_path]
        else:
            # Add audio delay (offset in frames, 40ms per frame at 25fps)
            delay_ms = offset * 40
            output_path = os.path.join(output_dir, f'test_offset_{offset}.avi')
            cmd = ['ffmpeg', '-y', '-i', source_video, 
                   '-af', f'adelay={delay_ms}|{delay_ms}',
                   '-c:v', 'copy', output_path]
        
        subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
        created.append((output_path, offset))
        print(f"  Created: test_offset_{offset}.avi (+{offset} frames)")
    
    return created


def run_demo(model, test_videos, baseline_offset=3):
    """Run detection on test videos and print results."""
    results = []
    
    print()
    print("=" * 70)
    print("  FCN-SyncNet Demo - Audio-Video Sync Detection")
    print("=" * 70)
    print()
    
    for video_path, added_offset in test_videos:
        expected = baseline_offset - added_offset  # Original has +3, adding offset shifts it
        
        offset, conf, raw = model.detect_offset_correlation(
            video_path,
            calibration_offset=3,
            calibration_scale=-0.5,
            calibration_baseline=-15,
            verbose=False
        )
        
        error = abs(offset - expected)
        status = "βœ“" if error <= 3 else "βœ—"
        
        result = {
            'video': os.path.basename(video_path),
            'added_offset': added_offset,
            'expected': expected,
            'detected': offset,
            'error': error,
            'status': status
        }
        results.append(result)
        
        print(f"  {status} {result['video']}")
        print(f"      Added offset: +{added_offset} frames")
        print(f"      Expected:     {expected:+d} frames")
        print(f"      Detected:     {offset:+d} frames")
        print(f"      Error:        {error} frames")
        print()
    
    # Summary
    total_error = sum(r['error'] for r in results)
    correct = sum(1 for r in results if r['error'] <= 3)
    
    print("-" * 70)
    print(f"  Summary: {correct}/{len(results)} correct (within 3 frames)")
    print(f"  Total error: {total_error} frames")
    print("=" * 70)
    
    return results


def compare_with_original_syncnet(test_videos, baseline_offset=3):
    """Run original SyncNet for comparison."""
    print()
    print("=" * 70)
    print("  Original SyncNet Comparison")
    print("=" * 70)
    print()
    
    original_results = []
    for video_path, added_offset in test_videos:
        expected = baseline_offset - added_offset
        
        # Run original demo_syncnet.py (use same Python interpreter)
        result = subprocess.run(
            [sys.executable, 'demo_syncnet.py', '--videofile', video_path, 
             '--tmp_dir', 'data/work/pytmp'],
            capture_output=True, text=True
        )
        
        # Parse output
        detected = None
        for line in result.stdout.split('\n'):
            if 'AV offset' in line:
                detected = int(line.split(':')[1].strip())
                break
        
        if detected is not None:
            error = abs(detected - expected)
            status = "βœ“" if error <= 3 else "βœ—"
            print(f"  {status} {os.path.basename(video_path)}: detected={detected:+d}, expected={expected:+d}, error={error}")
            original_results.append({'error': error})
        else:
            print(f"  ? {os.path.basename(video_path)}: detection failed")
            original_results.append({'error': None})
    
    print("=" * 70)
    return original_results


def main():
    parser = argparse.ArgumentParser(description='Generate FCN-SyncNet demo')
    parser.add_argument('--output', '-o', default='demo_output',
                       help='Output directory for test videos')
    parser.add_argument('--source', '-s', default='data/example.avi',
                       help='Source video file')
    parser.add_argument('--compare', '-c', action='store_true',
                       help='Also run original SyncNet for comparison')
    parser.add_argument('--cleanup', action='store_true',
                       help='Clean up test videos after demo')
    
    args = parser.parse_args()
    
    print()
    print("╔══════════════════════════════════════════════════════════════════╗")
    print("β•‘         FCN-SyncNet Demo - Audio-Video Sync Detection            β•‘")
    print("β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•")
    print()
    
    # Check source video
    if not os.path.exists(args.source):
        print(f"Error: Source video not found: {args.source}")
        sys.exit(1)
    
    # Create test videos
    print("Creating test videos with different offsets...")
    test_videos = create_offset_videos(args.source, args.output, offsets=[0, 5, 12])
    
    # Load FCN model
    print()
    print("Loading FCN-SyncNet model...")
    from SyncNetModel_FCN import StreamSyncFCN
    
    model = StreamSyncFCN(max_offset=15, pretrained_syncnet_path=None, auto_load_pretrained=False)
    checkpoint = torch.load('checkpoints/syncnet_fcn_epoch2.pth', map_location='cpu')
    encoder_state = {k: v for k, v in checkpoint['model_state_dict'].items()
                    if 'audio_encoder' in k or 'video_encoder' in k}
    model.load_state_dict(encoder_state, strict=False)
    model.eval()
    print(f"  βœ“ Loaded checkpoint (epoch {checkpoint.get('epoch', '?')})")
    
    # Run FCN demo
    fcn_results = run_demo(model, test_videos, baseline_offset=3)
    
    # Optionally compare with original
    original_results = None
    if args.compare:
        original_results = compare_with_original_syncnet(test_videos, baseline_offset=3)
        
        # Print comparison summary
        fcn_errors = [r['error'] for r in fcn_results]
        orig_errors = [r['error'] for r in original_results if r['error'] is not None]
        
        print()
        print("╔══════════════════════════════════════════════════════════════════╗")
        print("β•‘                     Comparison Summary                            β•‘")
        print("╠══════════════════════════════════════════════════════════════════╣")
        fcn_total = sum(fcn_errors)
        fcn_correct = sum(1 for e in fcn_errors if e <= 3)
        print(f"β•‘  FCN-SyncNet:      {fcn_correct}/{len(fcn_results)} correct, {fcn_total} frames total error        β•‘")
        if orig_errors:
            orig_total = sum(orig_errors)
            orig_correct = sum(1 for e in orig_errors if e <= 3)
            print(f"β•‘  Original SyncNet: {orig_correct}/{len(orig_errors)} correct, {orig_total} frames total error        β•‘")
        print("╠══════════════════════════════════════════════════════════════════╣")
        print("β•‘  FCN-SyncNet: Research prototype with real-time capability       β•‘")
        print("β•‘  Status: Working but needs more training data/epochs             β•‘")
        print("β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•")
    
    # Cleanup
    if args.cleanup:
        print()
        print("Cleaning up test videos...")
        for video_path, _ in test_videos:
            if os.path.exists(video_path):
                os.remove(video_path)
        if os.path.exists(args.output) and not os.listdir(args.output):
            os.rmdir(args.output)
        print("  Done.")
    
    print()
    print("Demo complete!")
    print()
    
    return 0


if __name__ == '__main__':
    sys.exit(main())