Spaces:
Sleeping
Sleeping
File size: 15,651 Bytes
579f772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
evaluate_model.py - Comprehensive Evaluation Script for FCN-SyncNet
This script evaluates the trained FCN-SyncNet model and generates metrics
suitable for documentation and README.
Usage:
# Evaluate on validation set
python evaluate_model.py --model checkpoints_regression/syncnet_fcn_best.pth --data_dir E:/voxceleb2_dataset/VoxCeleb2/dev --num_samples 500
# Quick test on single video
python evaluate_model.py --model checkpoints_regression/syncnet_fcn_best.pth --video data/example.avi
# Generate full report
python evaluate_model.py --model checkpoints_regression/syncnet_fcn_best.pth --data_dir E:/voxceleb2_dataset/VoxCeleb2/dev --full_report
Author: R V Abhishek
Date: 2025
"""
import torch
import torch.nn as nn
import numpy as np
import argparse
import os
import sys
import json
import time
from datetime import datetime
import glob
import random
import cv2
import subprocess
from scipy.io import wavfile
import python_speech_features
# Import model
from SyncNetModel_FCN import StreamSyncFCN, SyncNetFCN
class ModelEvaluator:
"""Evaluator for FCN-SyncNet models."""
def __init__(self, model_path, max_offset=125, use_attention=False, device=None):
"""
Initialize evaluator.
Args:
model_path: Path to trained model checkpoint
max_offset: Maximum offset in frames (default: 125 = ±5 seconds at 25fps)
use_attention: Whether model uses attention
device: Device to use (default: auto-detect)
"""
self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.max_offset = max_offset
print(f"Device: {self.device}")
print(f"Loading model from: {model_path}")
# Load model
self.model = StreamSyncFCN(
max_offset=max_offset,
use_attention=use_attention,
pretrained_syncnet_path=None,
auto_load_pretrained=False
)
# Load checkpoint
checkpoint = torch.load(model_path, map_location='cpu')
if 'model_state_dict' in checkpoint:
self.model.load_state_dict(checkpoint['model_state_dict'])
self.checkpoint_info = {
'epoch': checkpoint.get('epoch', 'unknown'),
'metrics': checkpoint.get('metrics', {})
}
else:
self.model.load_state_dict(checkpoint)
self.checkpoint_info = {'epoch': 'unknown', 'metrics': {}}
self.model = self.model.to(self.device)
self.model.eval()
print(f"✓ Model loaded (Epoch: {self.checkpoint_info['epoch']})")
# Count parameters
total_params = sum(p.numel() for p in self.model.parameters())
trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
def extract_audio_mfcc(self, video_path, temp_dir='temp_eval'):
"""Extract audio and compute MFCC."""
os.makedirs(temp_dir, exist_ok=True)
audio_path = os.path.join(temp_dir, 'temp_audio.wav')
cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000',
'-vn', '-acodec', 'pcm_s16le', audio_path]
subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
sample_rate, audio = wavfile.read(audio_path)
if len(audio.shape) > 1:
audio = audio.mean(axis=1)
mfcc = python_speech_features.mfcc(audio, sample_rate, numcep=13)
mfcc_tensor = torch.FloatTensor(mfcc.T).unsqueeze(0).unsqueeze(0)
if os.path.exists(audio_path):
os.remove(audio_path)
return mfcc_tensor
def extract_video_frames(self, video_path, target_size=(112, 112)):
"""Extract video frames as tensor."""
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, target_size)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame.astype(np.float32) / 255.0)
cap.release()
if not frames:
raise ValueError(f"No frames extracted from {video_path}")
frames_array = np.stack(frames, axis=0)
video_tensor = torch.FloatTensor(frames_array).permute(3, 0, 1, 2).unsqueeze(0)
return video_tensor
def evaluate_single_video(self, video_path, ground_truth_offset=0, verbose=True):
"""
Evaluate a single video.
Args:
video_path: Path to video file
ground_truth_offset: Known offset in frames (for computing error)
verbose: Print progress
Returns:
dict with prediction and metrics
"""
if verbose:
print(f"Evaluating: {video_path}")
try:
# Extract features
mfcc = self.extract_audio_mfcc(video_path)
video = self.extract_video_frames(video_path)
# Ensure minimum length
min_frames = 25
if video.shape[2] < min_frames:
if verbose:
print(f" Warning: Video too short ({video.shape[2]} frames)")
return None
# Crop to valid length
audio_frames = mfcc.shape[3] // 4
video_frames = video.shape[2]
min_length = min(audio_frames, video_frames)
video = video[:, :, :min_length, :, :]
mfcc = mfcc[:, :, :, :min_length*4]
# Run inference
start_time = time.time()
with torch.no_grad():
mfcc = mfcc.to(self.device)
video = video.to(self.device)
predicted_offsets, audio_feat, video_feat = self.model(mfcc, video)
# Get prediction
pred_offset = predicted_offsets.mean().item()
inference_time = time.time() - start_time
# Compute error
error = abs(pred_offset - ground_truth_offset)
result = {
'video': os.path.basename(video_path),
'predicted_offset': pred_offset,
'ground_truth_offset': ground_truth_offset,
'absolute_error': error,
'error_seconds': error / 25.0, # Convert to seconds
'inference_time': inference_time,
'video_frames': min_length,
}
if verbose:
print(f" Predicted: {pred_offset:.2f} frames ({pred_offset/25:.3f}s)")
print(f" Ground Truth: {ground_truth_offset} frames")
print(f" Error: {error:.2f} frames ({error/25:.3f}s)")
print(f" Inference time: {inference_time*1000:.1f}ms")
return result
except Exception as e:
if verbose:
print(f" Error: {e}")
return None
def evaluate_dataset(self, data_dir, num_samples=100, offset_range=None, verbose=True):
"""
Evaluate on a dataset with synthetic offsets.
Args:
data_dir: Path to dataset directory
num_samples: Number of samples to evaluate
offset_range: Tuple (min, max) for synthetic offsets (default: ±max_offset)
verbose: Print progress
Returns:
dict with aggregate metrics
"""
if offset_range is None:
offset_range = (-self.max_offset, self.max_offset)
# Find video files
video_files = glob.glob(os.path.join(data_dir, '**', '*.mp4'), recursive=True)
if len(video_files) == 0:
print(f"No video files found in {data_dir}")
return None
print(f"Found {len(video_files)} videos")
# Sample videos
if len(video_files) > num_samples:
video_files = random.sample(video_files, num_samples)
print(f"Evaluating {len(video_files)} samples...")
print("="*60)
results = []
errors = []
inference_times = []
for i, video_path in enumerate(video_files):
# Generate random offset (simulating desync)
ground_truth = random.randint(offset_range[0], offset_range[1])
result = self.evaluate_single_video(
video_path,
ground_truth_offset=ground_truth,
verbose=(verbose and i % 10 == 0)
)
if result:
results.append(result)
errors.append(result['absolute_error'])
inference_times.append(result['inference_time'])
# Progress
if (i + 1) % 50 == 0:
print(f"Progress: {i+1}/{len(video_files)}")
# Compute aggregate metrics
errors = np.array(errors)
inference_times = np.array(inference_times)
metrics = {
'num_samples': len(results),
'mae_frames': float(np.mean(errors)),
'mae_seconds': float(np.mean(errors) / 25.0),
'rmse_frames': float(np.sqrt(np.mean(errors**2))),
'std_frames': float(np.std(errors)),
'median_error_frames': float(np.median(errors)),
'max_error_frames': float(np.max(errors)),
'accuracy_1_frame': float(np.mean(errors <= 1) * 100),
'accuracy_3_frames': float(np.mean(errors <= 3) * 100),
'accuracy_1_second': float(np.mean(errors <= 25) * 100),
'avg_inference_time_ms': float(np.mean(inference_times) * 1000),
'max_offset_range': offset_range,
}
return metrics, results
def generate_report(self, metrics, output_path='evaluation_report.json'):
"""Generate evaluation report."""
report = {
'timestamp': datetime.now().isoformat(),
'model_info': {
'epoch': self.checkpoint_info.get('epoch'),
'training_metrics': self.checkpoint_info.get('metrics', {}),
'max_offset': self.max_offset,
},
'evaluation_metrics': metrics,
}
with open(output_path, 'w') as f:
json.dump(report, f, indent=2)
print(f"\nReport saved to: {output_path}")
return report
def print_metrics_summary(metrics):
"""Print formatted metrics summary."""
print("\n" + "="*60)
print("EVALUATION RESULTS")
print("="*60)
print(f"\n📊 Sample Statistics:")
print(f" Total samples evaluated: {metrics['num_samples']}")
print(f"\n📏 Error Metrics:")
print(f" Mean Absolute Error (MAE): {metrics['mae_frames']:.2f} frames ({metrics['mae_seconds']:.4f} seconds)")
print(f" Root Mean Square Error (RMSE): {metrics['rmse_frames']:.2f} frames")
print(f" Standard Deviation: {metrics['std_frames']:.2f} frames")
print(f" Median Error: {metrics['median_error_frames']:.2f} frames")
print(f" Max Error: {metrics['max_error_frames']:.2f} frames")
print(f"\n✅ Accuracy Metrics:")
print(f" Within ±1 frame: {metrics['accuracy_1_frame']:.2f}%")
print(f" Within ±3 frames: {metrics['accuracy_3_frames']:.2f}%")
print(f" Within ±1 second (25 frames): {metrics['accuracy_1_second']:.2f}%")
print(f"\n⚡ Performance:")
print(f" Avg Inference Time: {metrics['avg_inference_time_ms']:.1f}ms per video")
print("\n" + "="*60)
def print_readme_metrics(metrics):
"""Print metrics formatted for README.md."""
print("\n" + "="*60)
print("METRICS FOR README.md (Copy below)")
print("="*60)
print("""
## Model Performance
| Metric | Value |
|--------|-------|
| Mean Absolute Error (MAE) | {:.2f} frames ({:.4f}s) |
| Root Mean Square Error (RMSE) | {:.2f} frames |
| Accuracy (±1 frame) | {:.2f}% |
| Accuracy (±3 frames) | {:.2f}% |
| Accuracy (±1 second) | {:.2f}% |
| Average Inference Time | {:.1f}ms |
### Test Configuration
- **Test samples**: {} videos
- **Max offset range**: ±{} frames (±{:.1f} seconds)
- **Device**: CUDA/CPU
""".format(
metrics['mae_frames'],
metrics['mae_seconds'],
metrics['rmse_frames'],
metrics['accuracy_1_frame'],
metrics['accuracy_3_frames'],
metrics['accuracy_1_second'],
metrics['avg_inference_time_ms'],
metrics['num_samples'],
metrics['max_offset_range'][1],
metrics['max_offset_range'][1] / 25.0
))
def main():
parser = argparse.ArgumentParser(description='Evaluate FCN-SyncNet Model')
parser.add_argument('--model', type=str, required=True,
help='Path to trained model checkpoint (.pth)')
parser.add_argument('--data_dir', type=str, default=None,
help='Path to dataset directory for batch evaluation')
parser.add_argument('--video', type=str, default=None,
help='Path to single video for quick test')
parser.add_argument('--num_samples', type=int, default=100,
help='Number of samples for dataset evaluation (default: 100)')
parser.add_argument('--max_offset', type=int, default=125,
help='Max offset in frames (default: 125)')
parser.add_argument('--use_attention', action='store_true',
help='Use attention model')
parser.add_argument('--full_report', action='store_true',
help='Generate full JSON report')
parser.add_argument('--readme', action='store_true',
help='Print metrics formatted for README')
parser.add_argument('--output', type=str, default='evaluation_report.json',
help='Output path for report')
args = parser.parse_args()
# Validate args
if not args.video and not args.data_dir:
parser.error("Please specify either --video or --data_dir")
# Initialize evaluator
evaluator = ModelEvaluator(
model_path=args.model,
max_offset=args.max_offset,
use_attention=args.use_attention
)
print("\n" + "="*60)
# Single video evaluation
if args.video:
print("SINGLE VIDEO EVALUATION")
print("="*60)
result = evaluator.evaluate_single_video(args.video, verbose=True)
if result:
print("\n✓ Evaluation complete")
# Dataset evaluation
elif args.data_dir:
print("DATASET EVALUATION")
print("="*60)
metrics, results = evaluator.evaluate_dataset(
args.data_dir,
num_samples=args.num_samples,
verbose=True
)
if metrics:
print_metrics_summary(metrics)
if args.readme:
print_readme_metrics(metrics)
if args.full_report:
evaluator.generate_report(metrics, args.output)
print("\n✓ Done!")
if __name__ == '__main__':
main()
|