Spaces:
Sleeping
Sleeping
File size: 10,804 Bytes
579f772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
SyncNet FCN - Flask Backend API
Provides a web API for the SyncNet FCN audio-video sync detection.
Serves the frontend and handles video analysis requests.
Usage:
python app.py
Then open http://localhost:5000 in your browser.
Author: R-V-Abhishek
"""
import os
import sys
import json
import time
import shutil
import tempfile
from flask import Flask, request, jsonify, send_from_directory
from werkzeug.utils import secure_filename
# Add project root to path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
app = Flask(__name__, static_folder='frontend', static_url_path='')
# Configuration
UPLOAD_FOLDER = tempfile.mkdtemp(prefix='syncnet_')
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov', 'mkv', 'webm'}
MAX_CONTENT_LENGTH = 500 * 1024 * 1024 # 500 MB max
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = MAX_CONTENT_LENGTH
# Global model instance (lazy loaded)
_model = None
def allowed_file(filename):
"""Check if file extension is allowed."""
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def get_model(window_size=25, stride=5, buffer_size=100, use_attention=False):
"""Get or create model instance."""
global _model
# Load FCN model with trained checkpoint
from SyncNetModel_FCN import StreamSyncFCN
import torch
checkpoint_path = 'checkpoints/syncnet_fcn_epoch2.pth'
model = StreamSyncFCN(
max_offset=15,
pretrained_syncnet_path=None,
auto_load_pretrained=False
)
# Load trained weights
if os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
encoder_state = {k: v for k, v in checkpoint['model_state_dict'].items()
if 'audio_encoder' in k or 'video_encoder' in k}
model.load_state_dict(encoder_state, strict=False)
print(f"✓ Loaded FCN model (epoch {checkpoint.get('epoch', '?')})")
model.eval()
return model
# ========================================
# Routes
# ========================================
@app.route('/')
def index():
"""Serve the frontend."""
return send_from_directory(app.static_folder, 'index.html')
@app.route('/<path:path>')
def static_files(path):
"""Serve static files."""
return send_from_directory(app.static_folder, path)
@app.route('/api/status')
def api_status():
"""Check API and model status."""
try:
# Check if model can be loaded
pretrained_exists = os.path.exists('data/syncnet_v2.model')
return jsonify({
'status': 'Model Ready' if pretrained_exists else 'No Pretrained Model',
'pretrained_available': pretrained_exists,
'version': '1.0.0'
})
except Exception as e:
return jsonify({
'status': 'Error',
'error': str(e)
}), 500
@app.route('/api/analyze', methods=['POST'])
def api_analyze():
"""Analyze a video for audio-video sync."""
start_time = time.time()
temp_video_path = None
temp_dir = None
try:
# Check if video file is present
if 'video' not in request.files:
return jsonify({'error': 'No video file provided'}), 400
video_file = request.files['video']
if video_file.filename == '':
return jsonify({'error': 'No video file selected'}), 400
if not allowed_file(video_file.filename):
return jsonify({'error': 'Invalid file type. Allowed: MP4, AVI, MOV, MKV'}), 400
# Get settings from form data
window_size = int(request.form.get('window_size', 25))
stride = int(request.form.get('stride', 5))
buffer_size = int(request.form.get('buffer_size', 100))
# Validate settings
window_size = max(5, min(100, window_size))
stride = max(1, min(50, stride))
buffer_size = max(10, min(500, buffer_size))
# Save uploaded file
filename = secure_filename(video_file.filename)
temp_video_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
video_file.save(temp_video_path)
# Create temp directory for processing
temp_dir = tempfile.mkdtemp(prefix='syncnet_proc_')
# Get model
model = get_model(
window_size=window_size,
stride=stride,
buffer_size=buffer_size
)
# Process video using calibrated method
offset, confidence, raw_offset = model.detect_offset_correlation(
video_path=temp_video_path,
calibration_offset=3,
calibration_scale=-0.5,
calibration_baseline=-15,
temp_dir=temp_dir,
verbose=False
)
processing_time = time.time() - start_time
return jsonify({
'success': True,
'video_name': filename,
'offset_frames': int(offset),
'offset_seconds': float(offset / 25.0),
'confidence': float(confidence),
'raw_offset': int(raw_offset),
'processing_time': float(processing_time),
'settings': {
'window_size': window_size,
'stride': stride,
'buffer_size': buffer_size
}
})
except Exception as e:
import traceback
traceback.print_exc()
return jsonify({'error': str(e)}), 500
finally:
# Cleanup
if temp_video_path and os.path.exists(temp_video_path):
try:
os.remove(temp_video_path)
except:
pass
if temp_dir and os.path.exists(temp_dir):
try:
shutil.rmtree(temp_dir, ignore_errors=True)
except:
pass
@app.route('/api/analyze-stream', methods=['POST'])
def api_analyze_stream():
"""Analyze a HLS stream URL for audio-video sync."""
start_time = time.time()
temp_video_path = None
temp_dir = None
try:
# Get JSON data
data = request.get_json()
if not data or 'url' not in data:
return jsonify({'error': 'No stream URL provided'}), 400
stream_url = data['url']
# Validate URL
if not stream_url.startswith(('http://', 'https://')):
return jsonify({'error': 'Invalid URL. Must start with http:// or https://'}), 400
# Get settings
window_size = int(data.get('window_size', 25))
stride = int(data.get('stride', 5))
buffer_size = int(data.get('buffer_size', 100))
# Validate settings
window_size = max(5, min(100, window_size))
stride = max(1, min(50, stride))
buffer_size = max(10, min(500, buffer_size))
# Create temp directory
temp_dir = tempfile.mkdtemp(prefix='syncnet_stream_')
temp_video_path = os.path.join(temp_dir, 'stream_sample.mp4')
# Download a segment of the stream using ffmpeg (10 seconds)
import subprocess
ffmpeg_cmd = [
'ffmpeg', '-y',
'-i', stream_url,
'-t', '10', # 10 seconds
'-c', 'copy',
'-bsf:a', 'aac_adtstoasc',
temp_video_path
]
print(f"Downloading stream: {stream_url}")
result = subprocess.run(
ffmpeg_cmd,
capture_output=True,
text=True,
timeout=60 # 60 second timeout
)
if result.returncode != 0 or not os.path.exists(temp_video_path):
# Try alternative approach without codec copy
ffmpeg_cmd = [
'ffmpeg', '-y',
'-i', stream_url,
'-t', '10',
'-c:v', 'libx264',
'-c:a', 'aac',
temp_video_path
]
result = subprocess.run(
ffmpeg_cmd,
capture_output=True,
text=True,
timeout=120
)
if result.returncode != 0 or not os.path.exists(temp_video_path):
return jsonify({'error': f'Failed to download stream. FFmpeg error: {result.stderr[:500]}'}), 400
# Get model
model = get_model(
window_size=window_size,
stride=stride,
buffer_size=buffer_size
)
# Process video
proc_result = model.process_video_file(
video_path=temp_video_path,
return_trace=False,
temp_dir=temp_dir,
target_size=(112, 112),
verbose=False
)
if proc_result is None:
return jsonify({'error': 'Failed to process stream. Check if stream has audio track.'}), 400
offset, confidence = proc_result
processing_time = time.time() - start_time
# Extract stream name from URL
stream_name = stream_url.split('/')[-1][:50] if '/' in stream_url else stream_url[:50]
return jsonify({
'success': True,
'video_name': stream_name,
'source_url': stream_url,
'offset_frames': float(offset),
'offset_seconds': float(offset / 25.0),
'confidence': float(confidence),
'processing_time': float(processing_time),
'settings': {
'window_size': window_size,
'stride': stride,
'buffer_size': buffer_size
}
})
except subprocess.TimeoutExpired:
return jsonify({'error': 'Stream download timed out. The stream may be slow or unavailable.'}), 408
except Exception as e:
import traceback
traceback.print_exc()
return jsonify({'error': str(e)}), 500
finally:
# Cleanup
if temp_dir and os.path.exists(temp_dir):
try:
shutil.rmtree(temp_dir, ignore_errors=True)
except:
pass
# ========================================
# Main
# ========================================
if __name__ == '__main__':
print()
print("=" * 50)
print(" SyncNet FCN - Web Interface")
print("=" * 50)
print()
print(" Starting server...")
print(" Open http://localhost:5000 in your browser")
print()
print(" Press Ctrl+C to stop")
print("=" * 50)
print()
# Run Flask app
app.run(
host='0.0.0.0',
port=5000,
debug=False,
threaded=True
)
|