File size: 19,932 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#!/usr/bin/python
#-*- coding: utf-8 -*-
"""
Transfer Learning Implementation for SyncNet

This module provides pre-trained backbone integration for improved performance.

Supported backbones:
- Video: 3D ResNet (Kinetics), I3D, SlowFast, X3D
- Audio: VGGish (AudioSet), wav2vec 2.0, HuBERT

Author: Enhanced version
Date: 2025-11-22
"""

import torch
import torch.nn as nn
import torch.nn.functional as F


# ==================== VIDEO BACKBONES ====================

class ResNet3D_Backbone(nn.Module):
    """
    3D ResNet backbone pre-trained on Kinetics-400.
    Uses torchvision's video models.
    """
    def __init__(self, embedding_dim=512, pretrained=True, model_type='r3d_18'):
        super(ResNet3D_Backbone, self).__init__()
        
        try:
            import torchvision.models.video as video_models
            
            # Load pre-trained model
            if model_type == 'r3d_18':
                backbone = video_models.r3d_18(pretrained=pretrained)
            elif model_type == 'mc3_18':
                backbone = video_models.mc3_18(pretrained=pretrained)
            elif model_type == 'r2plus1d_18':
                backbone = video_models.r2plus1d_18(pretrained=pretrained)
            else:
                raise ValueError(f"Unknown model type: {model_type}")
            
            # Remove final FC and pooling layers
            self.features = nn.Sequential(*list(backbone.children())[:-2])
            
            # Add custom head
            self.conv_head = nn.Sequential(
                nn.Conv3d(512, embedding_dim, kernel_size=1),
                nn.BatchNorm3d(embedding_dim),
                nn.ReLU(inplace=True),
            )
            
            print(f"Loaded {model_type} with pretrained={pretrained}")
            
        except ImportError:
            print("Warning: torchvision not found. Using random initialization.")
            self.features = self._build_simple_3dcnn()
            self.conv_head = nn.Conv3d(512, embedding_dim, 1)
    
    def _build_simple_3dcnn(self):
        """Fallback if torchvision not available."""
        return nn.Sequential(
            nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3)),
            nn.BatchNorm3d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
            
            nn.Conv3d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm3d(128),
            nn.ReLU(inplace=True),
            
            nn.Conv3d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm3d(256),
            nn.ReLU(inplace=True),
            
            nn.Conv3d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm3d(512),
            nn.ReLU(inplace=True),
        )
    
    def forward(self, x):
        """
        Args:
            x: [B, 3, T, H, W]
        Returns:
            features: [B, C, T', H', W']
        """
        x = self.features(x)
        x = self.conv_head(x)
        return x


class I3D_Backbone(nn.Module):
    """
    Inflated 3D ConvNet (I3D) backbone.
    Requires external I3D implementation.
    """
    def __init__(self, embedding_dim=512, pretrained=True):
        super(I3D_Backbone, self).__init__()
        
        try:
            # Try to import I3D (needs to be installed separately)
            from i3d import InceptionI3d
            
            self.i3d = InceptionI3d(400, in_channels=3)
            
            if pretrained:
                # Load pre-trained weights
                state_dict = torch.load('models/rgb_imagenet.pt', map_location='cpu')
                self.i3d.load_state_dict(state_dict)
                print("Loaded I3D with ImageNet+Kinetics pre-training")
            
            # Adaptation layer
            self.adapt = nn.Conv3d(1024, embedding_dim, kernel_size=1)
            
        except:
            print("Warning: I3D not available. Install from: https://github.com/piergiaj/pytorch-i3d")
            # Fallback to simple 3D CNN
            self.i3d = self._build_fallback()
            self.adapt = nn.Conv3d(512, embedding_dim, 1)
    
    def _build_fallback(self):
        return nn.Sequential(
            nn.Conv3d(3, 64, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3)),
            nn.BatchNorm3d(64),
            nn.ReLU(inplace=True),
            nn.Conv3d(64, 512, kernel_size=3, padding=1),
            nn.BatchNorm3d(512),
            nn.ReLU(inplace=True),
        )
    
    def forward(self, x):
        features = self.i3d.extract_features(x) if hasattr(self.i3d, 'extract_features') else self.i3d(x)
        features = self.adapt(features)
        return features


# ==================== AUDIO BACKBONES ====================

class VGGish_Backbone(nn.Module):
    """
    VGGish audio encoder pre-trained on AudioSet.
    Processes log-mel spectrograms.
    """
    def __init__(self, embedding_dim=512, pretrained=True):
        super(VGGish_Backbone, self).__init__()
        
        try:
            import torchvggish
            
            # Load VGGish
            self.vggish = torchvggish.vggish()
            
            if pretrained:
                # Download and load pre-trained weights
                self.vggish.load_state_dict(
                    torch.hub.load_state_dict_from_url(
                        'https://github.com/harritaylor/torchvggish/releases/download/v0.1/vggish-10086976.pth',
                        map_location='cpu'
                    )
                )
                print("Loaded VGGish pre-trained on AudioSet")
            
            # Use convolutional part only
            self.features = self.vggish.features
            
            # Adaptation layer
            self.adapt = nn.Sequential(
                nn.Conv2d(512, embedding_dim, kernel_size=1),
                nn.BatchNorm2d(embedding_dim),
                nn.ReLU(inplace=True),
            )
            
        except ImportError:
            print("Warning: torchvggish not found. Install: pip install torchvggish")
            self.features = self._build_fallback()
            self.adapt = nn.Conv2d(512, embedding_dim, 1)
    
    def _build_fallback(self):
        """Simple audio CNN if VGGish unavailable."""
        return nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2),
            
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2),
            
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
        )
    
    def forward(self, x):
        """
        Args:
            x: [B, 1, F, T] or [B, 1, 96, T] (log-mel spectrogram)
        Returns:
            features: [B, C, F', T']
        """
        x = self.features(x)
        x = self.adapt(x)
        return x


class Wav2Vec_Backbone(nn.Module):
    """
    wav2vec 2.0 backbone for speech representation.
    Processes raw waveforms.
    """
    def __init__(self, embedding_dim=512, pretrained=True, model_name='facebook/wav2vec2-base'):
        super(Wav2Vec_Backbone, self).__init__()
        
        try:
            from transformers import Wav2Vec2Model
            
            if pretrained:
                self.wav2vec = Wav2Vec2Model.from_pretrained(model_name)
                print(f"Loaded {model_name} from HuggingFace")
            else:
                from transformers import Wav2Vec2Config
                config = Wav2Vec2Config()
                self.wav2vec = Wav2Vec2Model(config)
            
            # Freeze early layers for fine-tuning
            self._freeze_layers(num_layers_to_freeze=6)
            
            # Adaptation layer
            wav2vec_dim = self.wav2vec.config.hidden_size
            self.adapt = nn.Sequential(
                nn.Linear(wav2vec_dim, embedding_dim),
                nn.LayerNorm(embedding_dim),
                nn.ReLU(),
            )
            
        except ImportError:
            print("Warning: transformers not found. Install: pip install transformers")
            raise
    
    def _freeze_layers(self, num_layers_to_freeze):
        """Freeze early transformer layers."""
        for param in self.wav2vec.feature_extractor.parameters():
            param.requires_grad = False
        
        for i, layer in enumerate(self.wav2vec.encoder.layers):
            if i < num_layers_to_freeze:
                for param in layer.parameters():
                    param.requires_grad = False
    
    def forward(self, waveform):
        """
        Args:
            waveform: [B, T] - raw audio waveform (16kHz)
        Returns:
            features: [B, C, T'] - temporal features
        """
        # Extract features from wav2vec
        outputs = self.wav2vec(waveform, output_hidden_states=True)
        features = outputs.last_hidden_state  # [B, T', D]
        
        # Adapt to target dimension
        features = self.adapt(features)  # [B, T', embedding_dim]
        
        # Reshape to [B, C, T']
        features = features.transpose(1, 2)
        
        return features


# ==================== INTEGRATED SYNCNET WITH TRANSFER LEARNING ====================

class SyncNet_TransferLearning(nn.Module):
    """
    SyncNet with transfer learning from pre-trained backbones.
    
    Args:
        video_backbone: 'resnet3d', 'i3d', 'simple'
        audio_backbone: 'vggish', 'wav2vec', 'simple'
        embedding_dim: Dimension of shared embedding space
        max_offset: Maximum temporal offset to consider
        freeze_backbone: Whether to freeze backbone weights
    """
    def __init__(self, 
                 video_backbone='resnet3d',
                 audio_backbone='vggish',
                 embedding_dim=512,
                 max_offset=15,
                 freeze_backbone=False):
        super(SyncNet_TransferLearning, self).__init__()
        
        self.embedding_dim = embedding_dim
        self.max_offset = max_offset
        
        # Initialize video encoder
        if video_backbone == 'resnet3d':
            self.video_encoder = ResNet3D_Backbone(embedding_dim, pretrained=True)
        elif video_backbone == 'i3d':
            self.video_encoder = I3D_Backbone(embedding_dim, pretrained=True)
        else:
            from SyncNetModel_FCN import FCN_VideoEncoder
            self.video_encoder = FCN_VideoEncoder(embedding_dim)
        
        # Initialize audio encoder
        if audio_backbone == 'vggish':
            self.audio_encoder = VGGish_Backbone(embedding_dim, pretrained=True)
        elif audio_backbone == 'wav2vec':
            self.audio_encoder = Wav2Vec_Backbone(embedding_dim, pretrained=True)
        else:
            from SyncNetModel_FCN import FCN_AudioEncoder
            self.audio_encoder = FCN_AudioEncoder(embedding_dim)
        
        # Freeze backbones if requested
        if freeze_backbone:
            self._freeze_backbones()
        
        # Temporal pooling to handle variable spatial/frequency dimensions
        self.video_temporal_pool = nn.AdaptiveAvgPool3d((None, 1, 1))
        self.audio_temporal_pool = nn.AdaptiveAvgPool2d((1, None))
        
        # Correlation and sync prediction (from FCN model)
        from SyncNetModel_FCN import TemporalCorrelation
        self.correlation = TemporalCorrelation(max_displacement=max_offset)
        
        self.sync_predictor = nn.Sequential(
            nn.Conv1d(2*max_offset+1, 128, kernel_size=3, padding=1),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True),
            nn.Conv1d(128, 64, kernel_size=3, padding=1),
            nn.BatchNorm1d(64),
            nn.ReLU(inplace=True),
            nn.Conv1d(64, 2*max_offset+1, kernel_size=1),
        )
    
    def _freeze_backbones(self):
        """Freeze backbone parameters for fine-tuning only the head."""
        for param in self.video_encoder.parameters():
            param.requires_grad = False
        for param in self.audio_encoder.parameters():
            param.requires_grad = False
        print("Backbones frozen. Only training sync predictor.")
    
    def forward_video(self, video):
        """
        Extract video features.
        Args:
            video: [B, 3, T, H, W]
        Returns:
            features: [B, C, T']
        """
        features = self.video_encoder(video)  # [B, C, T', H', W']
        features = self.video_temporal_pool(features)  # [B, C, T', 1, 1]
        B, C, T, _, _ = features.shape
        features = features.view(B, C, T)  # [B, C, T']
        return features
    
    def forward_audio(self, audio):
        """
        Extract audio features.
        Args:
            audio: [B, 1, F, T] or [B, T] (raw waveform for wav2vec)
        Returns:
            features: [B, C, T']
        """
        if isinstance(self.audio_encoder, Wav2Vec_Backbone):
            # wav2vec expects [B, T]
            if audio.dim() == 4:
                # Convert from spectrogram to waveform (placeholder - need actual audio)
                raise NotImplementedError("Need raw waveform for wav2vec")
            features = self.audio_encoder(audio)
        else:
            features = self.audio_encoder(audio)  # [B, C, F', T']
            features = self.audio_temporal_pool(features)  # [B, C, 1, T']
            B, C, _, T = features.shape
            features = features.view(B, C, T)  # [B, C, T']
        
        return features
    
    def forward(self, audio, video):
        """
        Full forward pass with sync prediction.
        
        Args:
            audio: [B, 1, F, T] - audio features
            video: [B, 3, T', H, W] - video frames
            
        Returns:
            sync_probs: [B, 2K+1, T''] - sync probabilities
            audio_features: [B, C, T_a]
            video_features: [B, C, T_v]
        """
        # Extract features
        audio_features = self.forward_audio(audio)
        video_features = self.forward_video(video)
        
        # Align temporal dimensions
        min_time = min(audio_features.size(2), video_features.size(2))
        audio_features = audio_features[:, :, :min_time]
        video_features = video_features[:, :, :min_time]
        
        # Compute correlation
        correlation = self.correlation(video_features, audio_features)
        
        # Predict sync probabilities
        sync_logits = self.sync_predictor(correlation)
        sync_probs = F.softmax(sync_logits, dim=1)
        
        return sync_probs, audio_features, video_features
    
    def compute_offset(self, sync_probs):
        """
        Compute offset from sync probability map.
        
        Args:
            sync_probs: [B, 2K+1, T] - sync probabilities
            
        Returns:
            offsets: [B, T] - predicted offset for each frame
            confidences: [B, T] - confidence scores
        """
        max_probs, max_indices = torch.max(sync_probs, dim=1)
        offsets = self.max_offset - max_indices
        median_probs = torch.median(sync_probs, dim=1)[0]
        confidences = max_probs - median_probs
        return offsets, confidences


# ==================== TRAINING UTILITIES ====================

def fine_tune_with_transfer_learning(model, 
                                     train_loader, 
                                     val_loader,
                                     num_epochs=10,
                                     lr=1e-4,
                                     device='cuda'):
    """
    Fine-tune pre-trained model on SyncNet task.
    
    Strategy:
    1. Freeze backbones, train head (2-3 epochs)
    2. Unfreeze last layers, train with small lr (5 epochs)
    3. Unfreeze all, train with very small lr (2-3 epochs)
    """
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs)
    
    for epoch in range(num_epochs):
        # Phase 1: Freeze backbones
        if epoch < 3:
            model._freeze_backbones()
            current_lr = lr
        # Phase 2: Unfreeze
        elif epoch == 3:
            for param in model.parameters():
                param.requires_grad = True
            current_lr = lr / 10
            optimizer = torch.optim.Adam(model.parameters(), lr=current_lr)
        
        model.train()
        total_loss = 0
        
        for batch_idx, (audio, video, labels) in enumerate(train_loader):
            audio, video = audio.to(device), video.to(device)
            labels = labels.to(device)
            
            # Forward pass
            sync_probs, _, _ = model(audio, video)
            
            # Loss (cross-entropy on offset prediction)
            loss = F.cross_entropy(
                sync_probs.view(-1, sync_probs.size(1)),
                labels.view(-1)
            )
            
            # Backward pass
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item()
        
        # Validation
        model.eval()
        val_loss = 0
        correct = 0
        total = 0
        
        with torch.no_grad():
            for audio, video, labels in val_loader:
                audio, video = audio.to(device), video.to(device)
                labels = labels.to(device)
                
                sync_probs, _, _ = model(audio, video)
                
                val_loss += F.cross_entropy(
                    sync_probs.view(-1, sync_probs.size(1)),
                    labels.view(-1)
                ).item()
                
                offsets, _ = model.compute_offset(sync_probs)
                correct += (offsets.round() == labels).sum().item()
                total += labels.numel()
        
        scheduler.step()
        
        print(f"Epoch {epoch+1}/{num_epochs}")
        print(f"  Train Loss: {total_loss/len(train_loader):.4f}")
        print(f"  Val Loss: {val_loss/len(val_loader):.4f}")
        print(f"  Val Accuracy: {100*correct/total:.2f}%")


# ==================== EXAMPLE USAGE ====================

if __name__ == "__main__":
    print("Testing Transfer Learning SyncNet...")
    
    # Create model with pre-trained backbones
    model = SyncNet_TransferLearning(
        video_backbone='resnet3d',  # or 'i3d'
        audio_backbone='vggish',     # or 'wav2vec'
        embedding_dim=512,
        max_offset=15,
        freeze_backbone=False
    )
    
    print(f"\nModel architecture:")
    print(f"  Video encoder: {type(model.video_encoder).__name__}")
    print(f"  Audio encoder: {type(model.audio_encoder).__name__}")
    
    # Test forward pass
    dummy_audio = torch.randn(2, 1, 13, 100)
    dummy_video = torch.randn(2, 3, 25, 112, 112)
    
    try:
        sync_probs, audio_feat, video_feat = model(dummy_audio, dummy_video)
        print(f"\nForward pass successful!")
        print(f"  Sync probs: {sync_probs.shape}")
        print(f"  Audio features: {audio_feat.shape}")
        print(f"  Video features: {video_feat.shape}")
        
        offsets, confidences = model.compute_offset(sync_probs)
        print(f"  Offsets: {offsets.shape}")
        print(f"  Confidences: {confidences.shape}")
    except Exception as e:
        print(f"Error: {e}")
    
    # Count parameters
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"\nParameters:")
    print(f"  Total: {total_params:,}")
    print(f"  Trainable: {trainable_params:,}")