Spaces:
Running
Running
| import streamlit as st | |
| import pandas as pd | |
| from PIL import Image, ImageDraw, ImageFont | |
| import io | |
| def main(): | |
| # Sidebar logo and title | |
| st.sidebar.image("logo.png", use_container_width=True) # Display the logo at the top | |
| st.sidebar.title("Label Generator") | |
| st.sidebar.markdown("For [AI Energy Score Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)") | |
| # Initialize data_df | |
| data_df = None | |
| # Read Data from CSV | |
| try: | |
| data_df = pd.read_csv("data.csv") | |
| except FileNotFoundError: | |
| st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.") | |
| return | |
| except Exception as e: | |
| st.sidebar.error(f"Error reading 'data.csv': {e}") | |
| return | |
| # Ensure the CSV has required columns | |
| required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"] | |
| for col in required_columns: | |
| if col not in data_df.columns: | |
| st.sidebar.error(f"The CSV file must contain a column named '{col}'.") | |
| return | |
| # Dropdown for selecting a model | |
| st.sidebar.write("### Instructions:") | |
| st.sidebar.write("1. Select a model below") | |
| model_options = data_df["model"].unique().tolist() # Get model options | |
| selected_model = st.sidebar.selectbox( | |
| "Scored Models", model_options, help="Start typing to search for a model" | |
| ) # Searchable dropdown | |
| # Add step 2 instructions and move the Download button | |
| st.sidebar.write("2. Download the label") | |
| # Filter the data for the selected model | |
| model_data = data_df[data_df["model"] == selected_model].iloc[0] | |
| # Dynamically select the background image based on the score | |
| try: | |
| score = int(model_data["score"]) # Convert to int | |
| background_path = f"{score}.png" # E.g., "1.png", "2.png" | |
| background = Image.open(background_path).convert("RGBA") | |
| # Proportional scaling to fit within the target size | |
| target_size = (800, 600) # Maximum width and height | |
| background.thumbnail(target_size, Image.Resampling.LANCZOS) | |
| except FileNotFoundError: | |
| st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") | |
| background = Image.open("default_background.png").convert("RGBA") | |
| background.thumbnail(target_size, Image.Resampling.LANCZOS) # Resize default image proportionally | |
| except ValueError: | |
| st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") | |
| return | |
| # Generate the label with text | |
| generated_label = create_label(background, model_data) | |
| # Display the label | |
| st.image(generated_label, caption="Generated Label Preview") | |
| # Download button for the label | |
| img_buffer = io.BytesIO() | |
| generated_label.save(img_buffer, format="PNG") | |
| img_buffer.seek(0) | |
| st.sidebar.download_button( | |
| label="Download", | |
| data=img_buffer, | |
| file_name="AIEnergyScore.png", | |
| mime="image/png" | |
| ) | |
| # Step 3 instructions | |
| st.sidebar.write("3. Share your label in technical reports, announcements, etc.") | |
| def create_label(background_image, model_data): | |
| """ | |
| Create the label image by adding text from model_data to the background image. | |
| """ | |
| scale_factor = 2 # Render at 2x resolution for better text clarity | |
| high_res_size = (800 * scale_factor, 600 * scale_factor) | |
| # Resize background to high resolution | |
| high_res_image = background_image.resize(high_res_size, Image.Resampling.LANCZOS) | |
| draw = ImageDraw.Draw(high_res_image) | |
| # Load fonts with scaled sizes | |
| try: | |
| title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=22 * scale_factor) | |
| details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=18 * scale_factor) | |
| energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=20 * scale_factor) | |
| except Exception as e: | |
| st.error(f"Font loading failed: {e}") | |
| return high_res_image | |
| # Define scaled positions for text | |
| title_x, title_y = 28 * scale_factor, 128 * scale_factor | |
| details_x, details_y = 375 * scale_factor, 210 * scale_factor | |
| energy_x, energy_y = 350 * scale_factor, 390 * scale_factor | |
| # Group 1: Title (Bold) | |
| draw.text((title_x, title_y), str(model_data['model']), font=title_font, fill="black") | |
| draw.text((title_x, title_y + 30 * scale_factor), str(model_data['provider']), font=title_font, fill="black") | |
| # Group 2: Details (Right-Justified) | |
| details_lines = [ | |
| str(model_data['date']), | |
| str(model_data['task']), | |
| str(model_data['hardware']) | |
| ] | |
| for i, line in enumerate(details_lines): | |
| bbox = draw.textbbox((0, 0), line, font=details_font) | |
| text_width = bbox[2] - bbox[0] | |
| draw.text((details_x - text_width, details_y + i * 40 * scale_factor), line, font=details_font, fill="black") | |
| # Group 3: Energy (Bottom-Center) | |
| energy_text = str(model_data['energy']) | |
| bbox = draw.textbbox((0, 0), energy_text, font=energy_font) | |
| energy_text_width = bbox[2] - bbox[0] | |
| draw.text((energy_x - energy_text_width // 2, energy_y), energy_text, font=energy_font, fill="black") | |
| # Downscale to the target resolution | |
| final_image = high_res_image.resize((800, 600), Image.Resampling.LANCZOS) | |
| return final_image | |
| if __name__ == "__main__": | |
| main() | |