Spaces:
Running
Running
| import streamlit as st | |
| import pandas as pd | |
| from PIL import Image, ImageDraw, ImageFont | |
| import io | |
| def main(): | |
| # Inject custom CSS to change the color of selected tasks | |
| st.markdown( | |
| """ | |
| <style> | |
| /* Change background color of selected items */ | |
| .stMultiSelect [data-baseweb="tag"] { | |
| background-color: #3fa45bff !important; /* Custom green */ | |
| color: white !important; /* White text */ | |
| font-weight: medium; | |
| border-radius: 5px; | |
| padding: 5px 10px; | |
| } | |
| /* Change hover effect */ | |
| .stMultiSelect [data-baseweb="tag"]:hover { | |
| background-color: #358d4d !important; | |
| } | |
| /* Style the dropdown input field */ | |
| .stMultiSelect input { | |
| color: black !important; | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| # Sidebar logo and title | |
| with st.sidebar: | |
| col1, col2 = st.columns([1, 5]) | |
| with col1: | |
| logo = Image.open("logo.png") | |
| resized_logo = logo.resize((50, 50)) | |
| st.image(resized_logo) | |
| with col2: | |
| st.markdown( | |
| """ | |
| <div style=" | |
| display: flex; | |
| align-items: center; | |
| gap: 10px; | |
| margin: 0; | |
| padding: 0; | |
| font-family: 'Inter', sans-serif; | |
| font-size: 26px; | |
| font-weight: bold;"> | |
| AI Energy Score | |
| </div> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True) | |
| st.sidebar.write("### Generate Label:") | |
| # Define the ordered list of tasks. | |
| task_order = [ | |
| "Text Generation", | |
| "Image Generation", | |
| "Text Classification", | |
| "Image Classification", | |
| "Image Captioning", | |
| "Summarization", | |
| "Speech-to-Text (ASR)", | |
| "Object Detection", | |
| "Question Answering", | |
| "Sentence Similarity" | |
| ] | |
| # Task selection | |
| st.sidebar.write("#### 1. Select task(s) to view models") | |
| selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"]) | |
| # Mapping from task to CSV file name. | |
| task_to_file = { | |
| "Text Generation": "text_gen_energyscore.csv", | |
| "Image Generation": "image_generation_energyscore.csv", | |
| "Text Classification": "text_classification_energyscore.csv", | |
| "Image Classification": "image_classification_energyscore.csv", | |
| "Image Captioning": "image_caption_energyscore.csv", | |
| "Summarization": "summarization_energyscore.csv", | |
| "Speech-to-Text (ASR)": "asr_energyscore.csv", | |
| "Object Detection": "object_detection_energyscore.csv", | |
| "Question Answering": "question_answering_energyscore.csv", | |
| "Sentence Similarity": "sentence_similarity_energyscore.csv" | |
| } | |
| st.sidebar.write("#### 2. Select a model to generate label") | |
| default_model_data = { | |
| 'provider': "AI Provider", | |
| 'model': "Model Name", | |
| 'full_model': "AI Provider/Model Name", | |
| 'date': "", | |
| 'task': "", | |
| 'hardware': "", | |
| 'energy': "?", | |
| 'score': 5 | |
| } | |
| if not selected_tasks: | |
| model_data = default_model_data | |
| else: | |
| dfs = [] | |
| for task in selected_tasks: | |
| file_name = task_to_file[task] | |
| try: | |
| df = pd.read_csv(file_name) | |
| except FileNotFoundError: | |
| st.sidebar.error(f"Could not find '{file_name}' for task {task}!") | |
| continue | |
| except Exception as e: | |
| st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}") | |
| continue | |
| df['full_model'] = df['model'] | |
| df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True) | |
| # Multiply raw energy by 1000 to convert to Wh, then round to 2 decimals | |
| df['energy'] = (df['total_gpu_energy'] * 1000).round(2) | |
| df['score'] = df['energy_score'].fillna(1).astype(int) | |
| df['date'] = "February 2025" | |
| df['hardware'] = "NVIDIA H100-80GB" | |
| df['task'] = task | |
| dfs.append(df) | |
| if not dfs: | |
| model_data = default_model_data | |
| else: | |
| data_df = pd.concat(dfs, ignore_index=True) | |
| if data_df.empty: | |
| model_data = default_model_data | |
| else: | |
| model_options = data_df["full_model"].unique().tolist() | |
| selected_model = st.sidebar.selectbox( | |
| "Scored Models", | |
| model_options, | |
| help="Start typing to search for a model" | |
| ) | |
| model_data = data_df[data_df["full_model"] == selected_model].iloc[0] | |
| st.sidebar.write("#### 3. Download the label") | |
| try: | |
| score = int(model_data["score"]) | |
| background_path = f"{score}.png" | |
| background = Image.open(background_path).convert("RGBA") | |
| except FileNotFoundError: | |
| st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") | |
| background = Image.open("default_background.png").convert("RGBA") | |
| except ValueError: | |
| st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") | |
| return | |
| final_size = (520, 728) | |
| generated_label = create_label_single_pass(background, model_data, final_size) | |
| st.image(generated_label, caption="Generated Label Preview", width=520) | |
| img_buffer = io.BytesIO() | |
| generated_label.save(img_buffer, format="PNG") | |
| img_buffer.seek(0) | |
| st.sidebar.download_button( | |
| label="Download", | |
| data=img_buffer, | |
| file_name="AIEnergyScore.png", | |
| mime="image/png" | |
| ) | |
| st.sidebar.write("#### 4. Share your label! [Guidelines](https://huggingface.github.io/AIEnergyScore/#labelusage)") | |
| st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True) | |
| st.sidebar.write("### Key Links") | |
| st.sidebar.markdown( | |
| """ | |
| <ul style="margin-top: 0; margin-bottom: 0; padding-left: 20px;"> | |
| <li><a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard" target="_blank">Leaderboard</a></li> | |
| <li><a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" target="_blank">Submission Portal</a></li> | |
| <li><a href="https://huggingface.github.io/AIEnergyScore/#faq" target="_blank">FAQ</a></li> | |
| <li><a href="https://huggingface.github.io/AIEnergyScore/#documentation" target="_blank">Documentation</a></li> | |
| </ul> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| def create_label_single_pass(background_image, model_data, final_size=(520, 728)): | |
| bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS) | |
| draw = ImageDraw.Draw(bg_resized) | |
| try: | |
| title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27) | |
| details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23) | |
| energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=24) | |
| except Exception as e: | |
| st.error(f"Font loading failed: {e}") | |
| return bg_resized | |
| title_x, title_y = 33, 150 | |
| details_x, details_y = 480, 256 | |
| energy_x = 480 # Right margin for the energy value | |
| energy_y = 472 | |
| # Capitalize only the first letter of the first word while keeping the rest as is | |
| def smart_capitalize(text): | |
| """Capitalizes the first letter of a string only if it's not already capitalized.""" | |
| if not text: | |
| return text # Return unchanged if empty | |
| return text if text[0].isupper() else text[0].upper() + text[1:] | |
| # Apply smart capitalization | |
| provider_text = smart_capitalize(str(model_data['provider'])) | |
| model_text = smart_capitalize(str(model_data['model'])) | |
| draw.text((title_x, title_y), provider_text, font=title_font, fill="black") | |
| draw.text((title_x, title_y + 38), model_text, font=title_font, fill="black") | |
| details_lines = [str(model_data['date']), str(model_data['task']), str(model_data['hardware'])] | |
| for i, line in enumerate(details_lines): | |
| bbox = draw.textbbox((0, 0), line, font=details_font) | |
| text_width = bbox[2] - bbox[0] # Get text width | |
| draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black") | |
| # Format the energy value to 2 decimal places and right-align the text | |
| energy_text = f"{model_data['energy']:.2f}" | |
| energy_bbox = draw.textbbox((0, 0), energy_text, font=energy_font) | |
| energy_text_width = energy_bbox[2] - energy_bbox[0] | |
| draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black") | |
| return bg_resized | |
| if __name__ == "__main__": | |
| main() | |