Spaces:
Running
Running
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import typing as T | |
| from dataclasses import dataclass | |
| from functools import partial | |
| import torch | |
| import torch.nn as nn | |
| from torch import nn | |
| from torch.nn import LayerNorm | |
| import esm | |
| from esm import Alphabet | |
| from esm.esmfold.v1.categorical_mixture import categorical_lddt | |
| from esm.esmfold.v1.misc import ( | |
| batch_encode_sequences, | |
| collate_dense_tensors, | |
| output_to_pdb, | |
| ) | |
| from esm.esmfold.v1.trunk import FoldingTrunk, FoldingTrunkConfig | |
| from openfold.data.data_transforms import make_atom14_masks | |
| from openfold.np import residue_constants | |
| from openfold.utils.loss import compute_predicted_aligned_error, compute_tm | |
| class ESMFoldConfig: | |
| trunk: T.Any = FoldingTrunkConfig() | |
| lddt_head_hid_dim: int = 128 | |
| load_fn = esm.pretrained.load_model_and_alphabet | |
| esm_registry = { | |
| "esm2_8M": partial(load_fn, "esm2_t6_8M_UR50D_500K"), | |
| "esm2_8M_270K": esm.pretrained.esm2_t6_8M_UR50D, | |
| "esm2_35M": partial(load_fn, "esm2_t12_35M_UR50D_500K"), | |
| "esm2_35M_270K": esm.pretrained.esm2_t12_35M_UR50D, | |
| "esm2_150M": partial(load_fn, "esm2_t30_150M_UR50D_500K"), | |
| "esm2_150M_270K": partial(load_fn, "esm2_t30_150M_UR50D_270K"), | |
| "esm2_650M": esm.pretrained.esm2_t33_650M_UR50D, | |
| "esm2_650M_270K": partial(load_fn, "esm2_t33_650M_270K_UR50D"), | |
| "esm2_3B": esm.pretrained.esm2_t36_3B_UR50D, | |
| "esm2_3B_270K": partial(load_fn, "esm2_t36_3B_UR50D_500K"), | |
| "esm2_15B": esm.pretrained.esm2_t48_15B_UR50D, | |
| } | |
| class ESMFold(nn.Module): | |
| def __init__(self, esmfold_config=None, **kwargs): | |
| super().__init__() | |
| self.cfg = esmfold_config if esmfold_config else ESMFoldConfig(**kwargs) | |
| cfg = self.cfg | |
| self.distogram_bins = 64 | |
| self.esm, self.esm_dict = esm_registry.get(cfg.esm_type)() | |
| self.esm.requires_grad_(False) | |
| self.esm.half() | |
| self.esm_feats = self.esm.embed_dim | |
| self.esm_attns = self.esm.num_layers * self.esm.attention_heads | |
| self.register_buffer("af2_to_esm", ESMFold._af2_to_esm(self.esm_dict)) | |
| self.esm_s_combine = nn.Parameter(torch.zeros(self.esm.num_layers + 1)) | |
| c_s = cfg.trunk.sequence_state_dim | |
| c_z = cfg.trunk.pairwise_state_dim | |
| self.esm_s_mlp = nn.Sequential( | |
| LayerNorm(self.esm_feats), | |
| nn.Linear(self.esm_feats, c_s), | |
| nn.ReLU(), | |
| nn.Linear(c_s, c_s), | |
| ) | |
| if cfg.use_esm_attn_map: | |
| self.esm_z_mlp = nn.Sequential( | |
| LayerNorm(self.esm_attns), | |
| nn.Linear(self.esm_attns, c_z), | |
| nn.ReLU(), | |
| nn.Linear(c_z, c_z), | |
| ) | |
| # 0 is padding, N is unknown residues, N + 1 is mask. | |
| self.n_tokens_embed = residue_constants.restype_num + 3 | |
| self.pad_idx = 0 | |
| self.unk_idx = self.n_tokens_embed - 2 | |
| self.mask_idx = self.n_tokens_embed - 1 | |
| self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0) | |
| self.trunk = FoldingTrunk(**cfg.trunk) | |
| self.distogram_head = nn.Linear(c_z, self.distogram_bins) | |
| self.ptm_head = nn.Linear(c_z, self.distogram_bins) | |
| self.lm_head = nn.Linear(c_s, self.n_tokens_embed) | |
| self.lddt_bins = 50 | |
| self.lddt_head = nn.Sequential( | |
| nn.LayerNorm(cfg.trunk.structure_module.c_s), | |
| nn.Linear(cfg.trunk.structure_module.c_s, cfg.lddt_head_hid_dim), | |
| nn.Linear(cfg.lddt_head_hid_dim, cfg.lddt_head_hid_dim), | |
| nn.Linear(cfg.lddt_head_hid_dim, 37 * self.lddt_bins), | |
| ) | |
| def _af2_to_esm(d: Alphabet): | |
| # Remember that t is shifted from residue_constants by 1 (0 is padding). | |
| esm_reorder = [d.padding_idx] + [ | |
| d.get_idx(v) for v in residue_constants.restypes_with_x | |
| ] | |
| return torch.tensor(esm_reorder) | |
| def _af2_idx_to_esm_idx(self, aa, mask): | |
| aa = (aa + 1).masked_fill(mask != 1, 0) | |
| return self.af2_to_esm[aa] | |
| def _compute_language_model_representations( | |
| self, esmaa: torch.Tensor | |
| ) -> torch.Tensor: | |
| """Adds bos/eos tokens for the language model, since the structure module doesn't use these.""" | |
| batch_size = esmaa.size(0) | |
| bosi, eosi = self.esm_dict.cls_idx, self.esm_dict.eos_idx | |
| bos = esmaa.new_full((batch_size, 1), bosi) | |
| eos = esmaa.new_full((batch_size, 1), self.esm_dict.padding_idx) | |
| esmaa = torch.cat([bos, esmaa, eos], dim=1) | |
| # Use the first padding index as eos during inference. | |
| esmaa[range(batch_size), (esmaa != 1).sum(1)] = eosi | |
| res = self.esm( | |
| esmaa, | |
| repr_layers=range(self.esm.num_layers + 1), | |
| need_head_weights=self.cfg.use_esm_attn_map, | |
| ) | |
| esm_s = torch.stack( | |
| [v for _, v in sorted(res["representations"].items())], dim=2 | |
| ) | |
| esm_s = esm_s[:, 1:-1] # B, L, nLayers, C | |
| esm_z = ( | |
| res["attentions"].permute(0, 4, 3, 1, 2).flatten(3, 4)[:, 1:-1, 1:-1, :] | |
| if self.cfg.use_esm_attn_map | |
| else None | |
| ) | |
| return esm_s, esm_z | |
| def _mask_inputs_to_esm(self, esmaa, pattern): | |
| new_esmaa = esmaa.clone() | |
| new_esmaa[pattern == 1] = self.esm_dict.mask_idx | |
| return new_esmaa | |
| def forward( | |
| self, | |
| aa: torch.Tensor, | |
| mask: T.Optional[torch.Tensor] = None, | |
| residx: T.Optional[torch.Tensor] = None, | |
| masking_pattern: T.Optional[torch.Tensor] = None, | |
| num_recycles: T.Optional[int] = None, | |
| ): | |
| """Runs a forward pass given input tokens. Use `model.infer` to | |
| run inference from a sequence. | |
| Args: | |
| aa (torch.Tensor): Tensor containing indices corresponding to amino acids. Indices match | |
| openfold.np.residue_constants.restype_order_with_x. | |
| mask (torch.Tensor): Binary tensor with 1 meaning position is unmasked and 0 meaning position is masked. | |
| residx (torch.Tensor): Residue indices of amino acids. Will assume contiguous if not provided. | |
| masking_pattern (torch.Tensor): Optional masking to pass to the input. Binary tensor of the same size | |
| as `aa`. Positions with 1 will be masked. ESMFold sometimes produces different samples when | |
| different masks are provided. | |
| num_recycles (int): How many recycle iterations to perform. If None, defaults to training max | |
| recycles, which is 3. | |
| """ | |
| if mask is None: | |
| mask = torch.ones_like(aa) | |
| B = aa.shape[0] | |
| L = aa.shape[1] | |
| device = aa.device | |
| if residx is None: | |
| residx = torch.arange(L, device=device).expand_as(aa) | |
| # === ESM === | |
| esmaa = self._af2_idx_to_esm_idx(aa, mask) | |
| if masking_pattern is not None: | |
| esmaa = self._mask_inputs_to_esm(esmaa, masking_pattern) | |
| esm_s, esm_z = self._compute_language_model_representations(esmaa) | |
| # Convert esm_s to the precision used by the trunk and | |
| # the structure module. These tensors may be a lower precision if, for example, | |
| # we're running the language model in fp16 precision. | |
| esm_s = esm_s.to(self.esm_s_combine.dtype) | |
| esm_s = esm_s.detach() | |
| # === preprocessing === | |
| esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2) | |
| s_s_0 = self.esm_s_mlp(esm_s) | |
| if self.cfg.use_esm_attn_map: | |
| esm_z = esm_z.to(self.esm_s_combine.dtype) | |
| esm_z = esm_z.detach() | |
| s_z_0 = self.esm_z_mlp(esm_z) | |
| else: | |
| s_z_0 = s_s_0.new_zeros(B, L, L, self.cfg.trunk.pairwise_state_dim) | |
| s_s_0 += self.embedding(aa) | |
| structure: dict = self.trunk( | |
| s_s_0, s_z_0, aa, residx, mask, no_recycles=num_recycles | |
| ) | |
| # Documenting what we expect: | |
| structure = { | |
| k: v | |
| for k, v in structure.items() | |
| if k | |
| in [ | |
| "s_z", | |
| "s_s", | |
| "frames", | |
| "sidechain_frames", | |
| "unnormalized_angles", | |
| "angles", | |
| "positions", | |
| "states", | |
| ] | |
| } | |
| disto_logits = self.distogram_head(structure["s_z"]) | |
| disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2 | |
| structure["distogram_logits"] = disto_logits | |
| lm_logits = self.lm_head(structure["s_s"]) | |
| structure["lm_logits"] = lm_logits | |
| structure["aatype"] = aa | |
| make_atom14_masks(structure) | |
| for k in [ | |
| "atom14_atom_exists", | |
| "atom37_atom_exists", | |
| ]: | |
| structure[k] *= mask.unsqueeze(-1) | |
| structure["residue_index"] = residx | |
| lddt_head = self.lddt_head(structure["states"]).reshape( | |
| structure["states"].shape[0], B, L, -1, self.lddt_bins | |
| ) | |
| structure["lddt_head"] = lddt_head | |
| plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins) | |
| structure["plddt"] = ( | |
| 100 * plddt | |
| ) # we predict plDDT between 0 and 1, scale to be between 0 and 100. | |
| ptm_logits = self.ptm_head(structure["s_z"]) | |
| seqlen = mask.type(torch.int64).sum(1) | |
| structure["ptm_logits"] = ptm_logits | |
| structure["ptm"] = torch.stack( | |
| [ | |
| compute_tm( | |
| batch_ptm_logits[None, :sl, :sl], | |
| max_bins=31, | |
| no_bins=self.distogram_bins, | |
| ) | |
| for batch_ptm_logits, sl in zip(ptm_logits, seqlen) | |
| ] | |
| ) | |
| structure.update( | |
| compute_predicted_aligned_error( | |
| ptm_logits, max_bin=31, no_bins=self.distogram_bins | |
| ) | |
| ) | |
| return structure | |
| def infer( | |
| self, | |
| sequences: T.Union[str, T.List[str]], | |
| residx=None, | |
| masking_pattern: T.Optional[torch.Tensor] = None, | |
| num_recycles: T.Optional[int] = None, | |
| residue_index_offset: T.Optional[int] = 512, | |
| chain_linker: T.Optional[str] = "G" * 25, | |
| ): | |
| """Runs a forward pass given input sequences. | |
| Args: | |
| sequences (Union[str, List[str]]): A list of sequences to make predictions for. Multimers can also be passed in, | |
| each chain should be separated by a ':' token (e.g. "<chain1>:<chain2>:<chain3>"). | |
| residx (torch.Tensor): Residue indices of amino acids. Will assume contiguous if not provided. | |
| masking_pattern (torch.Tensor): Optional masking to pass to the input. Binary tensor of the same size | |
| as `aa`. Positions with 1 will be masked. ESMFold sometimes produces different samples when | |
| different masks are provided. | |
| num_recycles (int): How many recycle iterations to perform. If None, defaults to training max | |
| recycles (cfg.trunk.max_recycles), which is 4. | |
| residue_index_offset (int): Residue index separation between chains if predicting a multimer. Has no effect on | |
| single chain predictions. Default: 512. | |
| chain_linker (str): Linker to use between chains if predicting a multimer. Has no effect on single chain | |
| predictions. Default: length-25 poly-G ("G" * 25). | |
| """ | |
| if isinstance(sequences, str): | |
| sequences = [sequences] | |
| aatype, mask, _residx, linker_mask, chain_index = batch_encode_sequences( | |
| sequences, residue_index_offset, chain_linker | |
| ) | |
| if residx is None: | |
| residx = _residx | |
| elif not isinstance(residx, torch.Tensor): | |
| residx = collate_dense_tensors(residx) | |
| aatype, mask, residx, linker_mask = map( | |
| lambda x: x.to(self.device), (aatype, mask, residx, linker_mask) | |
| ) | |
| output = self.forward( | |
| aatype, | |
| mask=mask, | |
| residx=residx, | |
| masking_pattern=masking_pattern, | |
| num_recycles=num_recycles, | |
| ) | |
| output["atom37_atom_exists"] = output[ | |
| "atom37_atom_exists" | |
| ] * linker_mask.unsqueeze(2) | |
| output["mean_plddt"] = (output["plddt"] * output["atom37_atom_exists"]).sum( | |
| dim=(1, 2) | |
| ) / output["atom37_atom_exists"].sum(dim=(1, 2)) | |
| output["chain_index"] = chain_index | |
| return output | |
| def output_to_pdb(self, output: T.Dict) -> T.List[str]: | |
| """Returns the pbd (file) string from the model given the model output.""" | |
| return output_to_pdb(output) | |
| def infer_pdbs(self, seqs: T.List[str], *args, **kwargs) -> T.List[str]: | |
| """Returns list of pdb (files) strings from the model given a list of input sequences.""" | |
| output = self.infer(seqs, *args, **kwargs) | |
| return self.output_to_pdb(output) | |
| def infer_pdb(self, sequence: str, *args, **kwargs) -> str: | |
| """Returns the pdb (file) string from the model given an input sequence.""" | |
| return self.infer_pdbs([sequence], *args, **kwargs)[0] | |
| def set_chunk_size(self, chunk_size: T.Optional[int]): | |
| # This parameter means the axial attention will be computed | |
| # in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2). | |
| # It's equivalent to running a for loop over chunks of the dimension we're iterative over, | |
| # where the chunk_size is the size of the chunks, so 128 would mean to parse 128-lengthed chunks. | |
| # Setting the value to None will return to default behavior, disable chunking. | |
| self.trunk.set_chunk_size(chunk_size) | |
| def device(self): | |
| return self.esm_s_combine.device | |