Spaces:
Sleeping
Sleeping
local app demo is working
Browse files- README.md +40 -0
- app.py +42 -22
- dev-requirements.txt +0 -3
- examples/174-8460.png +0 -0
- examples/174-8460_d.png +0 -0
- examples/187-0.png +0 -0
- examples/187-0_d.png +0 -0
- examples/187-23040.png +0 -0
- examples/187-23040_d.png +0 -0
- inference.py +7 -346
- requirements.txt +3 -1
- visualization.py +353 -0
README.md
CHANGED
|
@@ -11,3 +11,43 @@ license: mit
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 14 |
+
|
| 15 |
+
# Installation
|
| 16 |
+
|
| 17 |
+
To setup the environment, run the following (recommended in a virtual environment):
|
| 18 |
+
```
|
| 19 |
+
# install base requirements
|
| 20 |
+
pip install -r pre-requirements.txt
|
| 21 |
+
pip install -r requirements.txt
|
| 22 |
+
|
| 23 |
+
cd mask2former/modeling/pixel_decoder/ops
|
| 24 |
+
python setup.py build install
|
| 25 |
+
|
| 26 |
+
# Option A: running locally only
|
| 27 |
+
pip install open3d==0.17.0
|
| 28 |
+
|
| 29 |
+
# Option B: running over ssh connection / headless environment
|
| 30 |
+
# in a separate folder
|
| 31 |
+
git clone https://github.com/isl-org/Open3D.git
|
| 32 |
+
cd Open3D/
|
| 33 |
+
mkdir build && cd build
|
| 34 |
+
cmake -DENABLE_HEADLESS_RENDERING=ON -DBUILD_GUI=OFF -DBUILD_WEBRTC=OFF -DUSE_SYSTEM_GLEW=OFF -DUSE_SYSTEM_GLFW=OFF ..
|
| 35 |
+
make -j$(nproc)
|
| 36 |
+
make install-pip-package
|
| 37 |
+
# to test custom build
|
| 38 |
+
cd ../examples/python/visualization/
|
| 39 |
+
python headless_rendering.py
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
The setup with pre-requirements.txt and requirements.txt resolves the issue that certain packages need to be installed
|
| 43 |
+
prior to others. By default, most additional packages should be added to requirements.txt.
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
To startup the application locally, run
|
| 47 |
+
```
|
| 48 |
+
gradio app.py
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
You can view the app on the specified port (usually 7860). To run over an ssh connection, setup port forwarding using
|
| 52 |
+
`-L 7860:localhost:7860` when you create your ssh connection. Note that you will need to install Open3D in headless
|
| 53 |
+
rendering for this to work.
|
app.py
CHANGED
|
@@ -14,7 +14,7 @@ from inference import main, setup_cfg
|
|
| 14 |
|
| 15 |
# internal settings
|
| 16 |
NUM_PROCESSES = 1
|
| 17 |
-
CROP =
|
| 18 |
SCORE_THRESHOLD = 0.8
|
| 19 |
MAX_PARTS = 5
|
| 20 |
ARGS = SimpleNamespace(
|
|
@@ -24,6 +24,7 @@ ARGS = SimpleNamespace(
|
|
| 24 |
output=".output",
|
| 25 |
cpu=True,
|
| 26 |
)
|
|
|
|
| 27 |
|
| 28 |
outputs = []
|
| 29 |
|
|
@@ -52,16 +53,6 @@ def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_sample
|
|
| 52 |
images[file].append(os.path.join(sub_path, image_file))
|
| 53 |
return images
|
| 54 |
|
| 55 |
-
def get_generator(images):
|
| 56 |
-
def gen():
|
| 57 |
-
while True:
|
| 58 |
-
for im in images:
|
| 59 |
-
time.sleep(0.025)
|
| 60 |
-
yield im
|
| 61 |
-
time.sleep(3)
|
| 62 |
-
|
| 63 |
-
return gen
|
| 64 |
-
|
| 65 |
# clear old predictions
|
| 66 |
for path in os.listdir(ARGS.output):
|
| 67 |
full_path = os.path.join(ARGS.output, path)
|
|
@@ -89,15 +80,32 @@ def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_sample
|
|
| 89 |
# process output
|
| 90 |
# TODO: may want to select these in decreasing order of score
|
| 91 |
image_files = find_images(ARGS.output)
|
| 92 |
-
|
| 93 |
for count, part in enumerate(image_files):
|
| 94 |
if count < MAX_PARTS:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
|
| 103 |
with gr.Blocks() as demo:
|
|
@@ -145,7 +153,7 @@ with gr.Blocks() as demo:
|
|
| 145 |
interactive=True,
|
| 146 |
)
|
| 147 |
num_samples = gr.Number(
|
| 148 |
-
value=
|
| 149 |
label="Number of samples",
|
| 150 |
show_label=True,
|
| 151 |
interactive=True,
|
|
@@ -154,16 +162,28 @@ with gr.Blocks() as demo:
|
|
| 154 |
maximum=20,
|
| 155 |
)
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
submit_btn = gr.Button("Run model")
|
| 158 |
|
| 159 |
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
|
| 160 |
# identified.
|
| 161 |
-
|
| 162 |
-
|
|
|
|
| 163 |
|
| 164 |
-
# TODO: maybe need to use a queue here so we don't overload the instance
|
| 165 |
submit_btn.click(
|
| 166 |
-
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=
|
| 167 |
)
|
| 168 |
|
| 169 |
demo.queue(api_open=False)
|
|
|
|
| 14 |
|
| 15 |
# internal settings
|
| 16 |
NUM_PROCESSES = 1
|
| 17 |
+
CROP = False
|
| 18 |
SCORE_THRESHOLD = 0.8
|
| 19 |
MAX_PARTS = 5
|
| 20 |
ARGS = SimpleNamespace(
|
|
|
|
| 24 |
output=".output",
|
| 25 |
cpu=True,
|
| 26 |
)
|
| 27 |
+
NUM_SAMPLES = 10
|
| 28 |
|
| 29 |
outputs = []
|
| 30 |
|
|
|
|
| 53 |
images[file].append(os.path.join(sub_path, image_file))
|
| 54 |
return images
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# clear old predictions
|
| 57 |
for path in os.listdir(ARGS.output):
|
| 58 |
full_path = os.path.join(ARGS.output, path)
|
|
|
|
| 80 |
# process output
|
| 81 |
# TODO: may want to select these in decreasing order of score
|
| 82 |
image_files = find_images(ARGS.output)
|
| 83 |
+
outputs = []
|
| 84 |
for count, part in enumerate(image_files):
|
| 85 |
if count < MAX_PARTS:
|
| 86 |
+
outputs.append([Image.open(im) for im in image_files[part]])
|
| 87 |
+
|
| 88 |
+
return [
|
| 89 |
+
*[gr.update(value=out[0], visible=True) for out in outputs],
|
| 90 |
+
*[gr.update(visible=False) for _ in range(MAX_PARTS - len(outputs))],
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_trigger(idx: int, fps: int = 40, oscillate: bool = True):
|
| 95 |
+
def iter_images(*args, **kwargs):
|
| 96 |
+
if idx < len(outputs):
|
| 97 |
+
for im in outputs[idx]:
|
| 98 |
+
time.sleep(1.0 / fps)
|
| 99 |
+
yield im
|
| 100 |
+
if oscillate:
|
| 101 |
+
for im in reversed(outputs[idx]):
|
| 102 |
+
time.sleep(1.0 / fps)
|
| 103 |
+
yield im
|
| 104 |
|
| 105 |
+
else:
|
| 106 |
+
raise ValueError("Could not find any images to load into this module.")
|
| 107 |
+
|
| 108 |
+
return iter_images
|
| 109 |
|
| 110 |
|
| 111 |
with gr.Blocks() as demo:
|
|
|
|
| 153 |
interactive=True,
|
| 154 |
)
|
| 155 |
num_samples = gr.Number(
|
| 156 |
+
value=NUM_SAMPLES,
|
| 157 |
label="Number of samples",
|
| 158 |
show_label=True,
|
| 159 |
interactive=True,
|
|
|
|
| 162 |
maximum=20,
|
| 163 |
)
|
| 164 |
|
| 165 |
+
examples = gr.Examples(
|
| 166 |
+
examples=[
|
| 167 |
+
["examples/59-4860.png", "examples/59-4860_d.png"],
|
| 168 |
+
["examples/174-8460.png", "examples/174-8460_d.png"],
|
| 169 |
+
["examples/187-0.png", "examples/187-0_d.png"],
|
| 170 |
+
["examples/187-23040.png", "examples/187-23040_d.png"],
|
| 171 |
+
],
|
| 172 |
+
inputs=[rgb_image, depth_image],
|
| 173 |
+
api_name=False,
|
| 174 |
+
examples_per_page=2,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
submit_btn = gr.Button("Run model")
|
| 178 |
|
| 179 |
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
|
| 180 |
# identified.
|
| 181 |
+
images = [gr.Image(type="pil", label=f"Part {idx + 1}", visible=False) for idx in range(MAX_PARTS)]
|
| 182 |
+
for idx, image_comp in enumerate(images):
|
| 183 |
+
image_comp.select(get_trigger(idx), inputs=[], outputs=image_comp, api_name=False)
|
| 184 |
|
|
|
|
| 185 |
submit_btn.click(
|
| 186 |
+
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=images, api_name=False
|
| 187 |
)
|
| 188 |
|
| 189 |
demo.queue(api_open=False)
|
dev-requirements.txt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
black==23.9.1
|
| 2 |
-
gradio==3.44.3
|
| 3 |
-
huggingface-hub==0.17.2
|
|
|
|
|
|
|
|
|
|
|
|
examples/174-8460.png
ADDED
|
examples/174-8460_d.png
ADDED
|
examples/187-0.png
ADDED
|
examples/187-0_d.png
ADDED
|
examples/187-23040.png
ADDED
|
examples/187-23040_d.png
ADDED
|
inference.py
CHANGED
|
@@ -19,7 +19,6 @@ import argparse
|
|
| 19 |
import logging
|
| 20 |
import os
|
| 21 |
import time
|
| 22 |
-
from copy import deepcopy
|
| 23 |
from typing import Any
|
| 24 |
|
| 25 |
import imageio
|
|
@@ -34,13 +33,19 @@ from detectron2.projects.deeplab import add_deeplab_config
|
|
| 34 |
from detectron2.structures import instances
|
| 35 |
from detectron2.utils import comm
|
| 36 |
from detectron2.utils.logger import setup_logger
|
| 37 |
-
from PIL import Image, ImageChops
|
| 38 |
|
| 39 |
from mask2former import (
|
| 40 |
add_maskformer2_config,
|
| 41 |
add_motionnet_config,
|
| 42 |
)
|
| 43 |
from utilities import prediction_to_json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint, in order to
|
| 46 |
# replicate model loading without the overhead of setting up an OPDTrainer
|
|
@@ -63,9 +68,7 @@ TYPE_CLASSIFICATION = {
|
|
| 63 |
1: "translation",
|
| 64 |
}
|
| 65 |
|
| 66 |
-
POINT_COLOR = [1, 0, 0] # red for demonstration
|
| 67 |
ARROW_COLOR = [0, 1, 0] # green
|
| 68 |
-
IMAGE_EXTENSIONS = (".png", ".jpg", ".jpeg")
|
| 69 |
|
| 70 |
|
| 71 |
def get_parser() -> argparse.ArgumentParser:
|
|
@@ -336,348 +339,6 @@ def predict(model: nn.Module, inp: list[dict[str, Any]]) -> list[dict[str, insta
|
|
| 336 |
return out
|
| 337 |
|
| 338 |
|
| 339 |
-
def generate_rotation_visualization(
|
| 340 |
-
pcd: o3d.geometry.PointCloud,
|
| 341 |
-
axis_arrow: o3d.geometry.TriangleMesh,
|
| 342 |
-
mask: np.ndarray,
|
| 343 |
-
axis_vector: np.ndarray,
|
| 344 |
-
origin: np.ndarray,
|
| 345 |
-
range_min: float,
|
| 346 |
-
range_max: float,
|
| 347 |
-
num_samples: int,
|
| 348 |
-
output_dir: str,
|
| 349 |
-
) -> None:
|
| 350 |
-
"""
|
| 351 |
-
Generate visualization files for a rotation motion of a part.
|
| 352 |
-
|
| 353 |
-
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
| 354 |
-
:param axis_arrow: mesh object representing axis arrow of rotation to be rendered in visualization
|
| 355 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
| 356 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
| 357 |
-
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
| 358 |
-
:param range_min: float representing the minimum range of motion in radians
|
| 359 |
-
:param range_max: float representing the maximum range of motion in radians
|
| 360 |
-
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
| 361 |
-
:param output_dir: string path to directory in which to save visualization output
|
| 362 |
-
"""
|
| 363 |
-
angle_in_radians = np.linspace(range_min, range_max, num_samples)
|
| 364 |
-
angles_in_degrees = angle_in_radians * 180 / np.pi
|
| 365 |
-
|
| 366 |
-
for idx, angle_in_degrees in enumerate(angles_in_degrees):
|
| 367 |
-
# Make a copy of your original point cloud and arrow for each rotation
|
| 368 |
-
rotated_pcd = deepcopy(pcd)
|
| 369 |
-
rotated_arrow = deepcopy(axis_arrow)
|
| 370 |
-
|
| 371 |
-
angle_rad = np.radians(angle_in_degrees)
|
| 372 |
-
rotated_pcd = rotate_part(rotated_pcd, mask, axis_vector, origin, angle_rad)
|
| 373 |
-
|
| 374 |
-
# Create a Visualizer object for each rotation
|
| 375 |
-
vis = o3d.visualization.Visualizer()
|
| 376 |
-
vis.create_window()
|
| 377 |
-
|
| 378 |
-
# Add the rotated geometries
|
| 379 |
-
vis.add_geometry(rotated_pcd)
|
| 380 |
-
vis.add_geometry(rotated_arrow)
|
| 381 |
-
|
| 382 |
-
# Apply the additional rotation around x-axis if desired
|
| 383 |
-
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
| 384 |
-
rotation_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
| 385 |
-
rotated_pcd.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
| 386 |
-
rotated_arrow.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
| 387 |
-
|
| 388 |
-
# Capture and save the image
|
| 389 |
-
output_filename = f"{output_dir}/{idx}.png"
|
| 390 |
-
vis.capture_screen_image(output_filename, do_render=True)
|
| 391 |
-
vis.destroy_window()
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
def generate_translation_visualization(
|
| 395 |
-
pcd: o3d.geometry.PointCloud,
|
| 396 |
-
axis_arrow: o3d.geometry.TriangleMesh,
|
| 397 |
-
mask: np.ndarray,
|
| 398 |
-
end: np.ndarray,
|
| 399 |
-
range_min: float,
|
| 400 |
-
range_max: float,
|
| 401 |
-
num_samples: int,
|
| 402 |
-
output_dir: str,
|
| 403 |
-
) -> None:
|
| 404 |
-
"""
|
| 405 |
-
Generate visualization files for a translation motion of a part.
|
| 406 |
-
|
| 407 |
-
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
| 408 |
-
:param axis_arrow: mesh object representing axis arrow of translation to be rendered in visualization
|
| 409 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
| 410 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
| 411 |
-
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of translation
|
| 412 |
-
:param range_min: float representing the minimum range of motion
|
| 413 |
-
:param range_max: float representing the maximum range of motion
|
| 414 |
-
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
| 415 |
-
:param output_dir: string path to directory in which to save visualization output
|
| 416 |
-
"""
|
| 417 |
-
translate_distances = np.linspace(range_min, range_max, num_samples)
|
| 418 |
-
for idx, translate_distance in enumerate(translate_distances):
|
| 419 |
-
translated_pcd = deepcopy(pcd)
|
| 420 |
-
translated_arrow = deepcopy(axis_arrow)
|
| 421 |
-
|
| 422 |
-
translated_pcd = translate_part(translated_pcd, mask, end, translate_distance.item())
|
| 423 |
-
|
| 424 |
-
# Create a Visualizer object for each rotation
|
| 425 |
-
vis = o3d.visualization.Visualizer()
|
| 426 |
-
vis.create_window()
|
| 427 |
-
|
| 428 |
-
# Add the translated geometries
|
| 429 |
-
vis.add_geometry(translated_pcd)
|
| 430 |
-
vis.add_geometry(translated_arrow)
|
| 431 |
-
|
| 432 |
-
# Apply the additional rotation around x-axis if desired
|
| 433 |
-
# TODO: not sure why we need this rotation for the translation, and when it would be desired
|
| 434 |
-
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
| 435 |
-
R = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
| 436 |
-
translated_pcd.rotate(R, center=translated_pcd.get_center())
|
| 437 |
-
translated_arrow.rotate(R, center=translated_pcd.get_center())
|
| 438 |
-
|
| 439 |
-
# Capture and save the image
|
| 440 |
-
output_filename = f"{output_dir}/{idx}.png"
|
| 441 |
-
vis.capture_screen_image(output_filename, do_render=True)
|
| 442 |
-
vis.destroy_window()
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
def get_rotation_matrix_from_vectors(vec1: np.ndarray, vec2: np.ndarray) -> np.ndarray:
|
| 446 |
-
"""
|
| 447 |
-
Find the rotation matrix that aligns vec1 to vec2
|
| 448 |
-
|
| 449 |
-
:param vec1: A 3d "source" vector
|
| 450 |
-
:param vec2: A 3d "destination" vector
|
| 451 |
-
:return: A transform matrix (3x3) which when applied to vec1, aligns it with vec2.
|
| 452 |
-
"""
|
| 453 |
-
a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3)
|
| 454 |
-
v = np.cross(a, b)
|
| 455 |
-
c = np.dot(a, b)
|
| 456 |
-
s = np.linalg.norm(v)
|
| 457 |
-
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
|
| 458 |
-
rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s**2))
|
| 459 |
-
return rotation_matrix
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
def draw_line(start_point: np.ndarray, end_point: np.ndarray) -> o3d.geometry.TriangleMesh:
|
| 463 |
-
"""
|
| 464 |
-
Generate 3D mesh representing axis from start_point to end_point.
|
| 465 |
-
|
| 466 |
-
:param start_point: np.ndarray of dimensions (3, ) representing the start point of the axis
|
| 467 |
-
:param end_point: np.ndarray of dimensions (3, ) representing the end point of the axis
|
| 468 |
-
:return: mesh object representing axis from start to end
|
| 469 |
-
"""
|
| 470 |
-
# Compute direction vector and normalize it
|
| 471 |
-
direction_vector = end_point - start_point
|
| 472 |
-
normalized_vector = direction_vector / np.linalg.norm(direction_vector)
|
| 473 |
-
|
| 474 |
-
# Compute the rotation matrix to align the Z-axis with the desired direction
|
| 475 |
-
target_vector = np.array([0, 0, 1])
|
| 476 |
-
rot_mat = get_rotation_matrix_from_vectors(target_vector, normalized_vector)
|
| 477 |
-
|
| 478 |
-
# Create the cylinder (shaft of the arrow)
|
| 479 |
-
cylinder_length = 0.9 # 90% of the total arrow length, you can adjust as needed
|
| 480 |
-
cylinder_radius = 0.01 # Adjust the thickness of the arrow shaft
|
| 481 |
-
cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=cylinder_radius, height=cylinder_length)
|
| 482 |
-
|
| 483 |
-
# Move base of cylinder to origin, rotate, then translate to start_point
|
| 484 |
-
cylinder.translate([0, 0, 0])
|
| 485 |
-
cylinder.rotate(rot_mat, center=[0, 0, 0])
|
| 486 |
-
cylinder.translate(start_point)
|
| 487 |
-
|
| 488 |
-
# Create the cone (head of the arrow)
|
| 489 |
-
cone_height = 0.1 # 10% of the total arrow length, adjust as needed
|
| 490 |
-
cone_radius = 0.03 # Adjust the size of the arrowhead
|
| 491 |
-
cone = o3d.geometry.TriangleMesh.create_cone(radius=cone_radius, height=cone_height)
|
| 492 |
-
|
| 493 |
-
# Move base of cone to origin, rotate, then translate to end of cylinder
|
| 494 |
-
cone.translate([-0, 0, 0])
|
| 495 |
-
cone.rotate(rot_mat, center=[0, 0, 0])
|
| 496 |
-
cone.translate(start_point + normalized_vector * 0.4)
|
| 497 |
-
|
| 498 |
-
arrow = cylinder + cone
|
| 499 |
-
return arrow
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
def rotate_part(
|
| 503 |
-
pcd: o3d.geometry.PointCloud, mask: np.ndarray, axis_vector: np.ndarray, origin: np.ndarray, angle_rad: float
|
| 504 |
-
) -> o3d.geometry.PointCloud:
|
| 505 |
-
"""
|
| 506 |
-
Generate rotated point cloud of mask based on provided angle around axis.
|
| 507 |
-
|
| 508 |
-
:param pcd: point cloud object representing points of image
|
| 509 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
| 510 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
| 511 |
-
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
| 512 |
-
:param angle_rad: angle in radians to rotate mask part
|
| 513 |
-
:return: point cloud object after rotation of masked part
|
| 514 |
-
"""
|
| 515 |
-
# Get the coordinates of the point cloud as a numpy array
|
| 516 |
-
points_np = np.asarray(pcd.points)
|
| 517 |
-
|
| 518 |
-
# Convert point cloud colors to numpy array for easier manipulation
|
| 519 |
-
colors_np = np.asarray(pcd.colors)
|
| 520 |
-
|
| 521 |
-
# Create skew-symmetric matrix from end
|
| 522 |
-
K = np.array(
|
| 523 |
-
[
|
| 524 |
-
[0, -axis_vector[2], axis_vector[1]],
|
| 525 |
-
[axis_vector[2], 0, -axis_vector[0]],
|
| 526 |
-
[-axis_vector[1], axis_vector[0], 0],
|
| 527 |
-
]
|
| 528 |
-
)
|
| 529 |
-
|
| 530 |
-
# Compute rotation matrix using Rodrigues' formula
|
| 531 |
-
R = np.eye(3) + np.sin(angle_rad) * K + (1 - np.cos(angle_rad)) * np.dot(K, K)
|
| 532 |
-
|
| 533 |
-
# Iterate over the mask and rotate the points corresponding to the object pixels
|
| 534 |
-
for i in range(mask.shape[0]):
|
| 535 |
-
for j in range(mask.shape[1]):
|
| 536 |
-
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
| 537 |
-
point_index = i * mask.shape[1] + j
|
| 538 |
-
|
| 539 |
-
# Translate the point such that the rotation origin is at the world origin
|
| 540 |
-
translated_point = points_np[point_index] - origin
|
| 541 |
-
|
| 542 |
-
# Rotate the translated point
|
| 543 |
-
rotated_point = np.dot(R, translated_point)
|
| 544 |
-
|
| 545 |
-
# Translate the point back
|
| 546 |
-
points_np[point_index] = rotated_point + origin
|
| 547 |
-
|
| 548 |
-
colors_np[point_index] = POINT_COLOR
|
| 549 |
-
|
| 550 |
-
# Update the point cloud's coordinates
|
| 551 |
-
pcd.points = o3d.utility.Vector3dVector(points_np)
|
| 552 |
-
|
| 553 |
-
# Update point cloud colors
|
| 554 |
-
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
| 555 |
-
|
| 556 |
-
return pcd
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
def translate_part(pcd, mask, axis_vector, distance):
|
| 560 |
-
"""
|
| 561 |
-
Generate translated point cloud of mask based on provided angle around axis.
|
| 562 |
-
|
| 563 |
-
:param pcd: point cloud object representing points of image
|
| 564 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
| 565 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
| 566 |
-
:param distance: distance within coordinate system to translate mask part
|
| 567 |
-
:return: point cloud object after translation of masked part
|
| 568 |
-
"""
|
| 569 |
-
normalized_vector = axis_vector / np.linalg.norm(axis_vector)
|
| 570 |
-
translation_vector = normalized_vector * distance
|
| 571 |
-
|
| 572 |
-
# Convert point cloud colors to numpy array for easier manipulation
|
| 573 |
-
colors_np = np.asarray(pcd.colors)
|
| 574 |
-
|
| 575 |
-
# Get the coordinates of the point cloud as a numpy array
|
| 576 |
-
points_np = np.asarray(pcd.points)
|
| 577 |
-
|
| 578 |
-
# Iterate over the mask and assign the color to the points corresponding to the object pixels
|
| 579 |
-
for i in range(mask.shape[0]):
|
| 580 |
-
for j in range(mask.shape[1]):
|
| 581 |
-
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
| 582 |
-
point_index = i * mask.shape[1] + j
|
| 583 |
-
colors_np[point_index] = POINT_COLOR
|
| 584 |
-
points_np[point_index] += translation_vector
|
| 585 |
-
|
| 586 |
-
# Update point cloud colors
|
| 587 |
-
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
| 588 |
-
|
| 589 |
-
# Update the point cloud's coordinates
|
| 590 |
-
pcd.points = o3d.utility.Vector3dVector(points_np)
|
| 591 |
-
|
| 592 |
-
return pcd
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
def batch_trim(images_path: str, save_path: str, identical: bool = False) -> None:
|
| 596 |
-
"""
|
| 597 |
-
Trim white spaces from all images in the given path and save new images to folder.
|
| 598 |
-
|
| 599 |
-
:param images_path: local path to folder containing all images. Images must have the extension ".png", ".jpg", or
|
| 600 |
-
".jpeg".
|
| 601 |
-
:param save_path: local path to folder in which to save trimmed images
|
| 602 |
-
:param identical: if True, will apply same crop to all images, else each image will have its whitespace trimmed
|
| 603 |
-
independently. Note that in the latter case, each image may have a slightly different size.
|
| 604 |
-
"""
|
| 605 |
-
|
| 606 |
-
def get_trim(im):
|
| 607 |
-
"""Trim whitespace from an image and return the cropped image."""
|
| 608 |
-
bg = Image.new(im.mode, im.size, im.getpixel((0, 0)))
|
| 609 |
-
diff = ImageChops.difference(im, bg)
|
| 610 |
-
diff = ImageChops.add(diff, diff, 2.0, -100)
|
| 611 |
-
bbox = diff.getbbox()
|
| 612 |
-
return bbox
|
| 613 |
-
|
| 614 |
-
if identical: #
|
| 615 |
-
images = []
|
| 616 |
-
optimal_box = None
|
| 617 |
-
|
| 618 |
-
# load all images
|
| 619 |
-
for image_file in sorted(os.listdir(images_path)):
|
| 620 |
-
if image_file.endswith(IMAGE_EXTENSIONS):
|
| 621 |
-
image_path = os.path.join(images_path, image_file)
|
| 622 |
-
images.append(Image.open(image_path))
|
| 623 |
-
|
| 624 |
-
# find optimal box size
|
| 625 |
-
for im in images:
|
| 626 |
-
bbox = get_trim(im)
|
| 627 |
-
if bbox is None:
|
| 628 |
-
bbox = (0, 0, im.size[0], im.size[1]) # bound entire image
|
| 629 |
-
|
| 630 |
-
if optimal_box is None:
|
| 631 |
-
optimal_box = bbox
|
| 632 |
-
else:
|
| 633 |
-
optimal_box = (
|
| 634 |
-
min(optimal_box[0], bbox[0]),
|
| 635 |
-
min(optimal_box[1], bbox[1]),
|
| 636 |
-
max(optimal_box[2], bbox[2]),
|
| 637 |
-
max(optimal_box[3], bbox[3]),
|
| 638 |
-
)
|
| 639 |
-
|
| 640 |
-
# apply cropping, if optimal box was found
|
| 641 |
-
for idx, im in enumerate(images):
|
| 642 |
-
im.crop(optimal_box)
|
| 643 |
-
im.save(os.path.join(save_path, f"{idx}.png"))
|
| 644 |
-
im.close()
|
| 645 |
-
|
| 646 |
-
else: # trim each image separately
|
| 647 |
-
for image_file in os.listdir(images_path):
|
| 648 |
-
if image_file.endswith(IMAGE_EXTENSIONS):
|
| 649 |
-
image_path = os.path.join(images_path, image_file)
|
| 650 |
-
with Image.open(image_path) as im:
|
| 651 |
-
bbox = get_trim(im)
|
| 652 |
-
trimmed = im.crop(bbox) if bbox else im
|
| 653 |
-
trimmed.save(os.path.join(save_path, image_file))
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
def create_gif(image_folder_path: str, num_samples: int, gif_filename: str = "output.gif") -> None:
|
| 657 |
-
"""
|
| 658 |
-
Create gif out of folder of images and save to file.
|
| 659 |
-
|
| 660 |
-
:param image_folder_path: path to folder containing images (non-recursive). Assumes images are named as {i}.png for
|
| 661 |
-
each of i from 0 to num_samples.
|
| 662 |
-
:param num_samples: number of sampled images to compile into gif.
|
| 663 |
-
:param gif_filename: filename for gif, defaults to "output.gif"
|
| 664 |
-
"""
|
| 665 |
-
# Generate a list of image filenames (assuming the images are saved as 0.png, 1.png, etc.)
|
| 666 |
-
image_files = [f"{image_folder_path}/{i}.png" for i in range(num_samples)]
|
| 667 |
-
|
| 668 |
-
# Read the images using imageio
|
| 669 |
-
images = [imageio.imread(image_file) for image_file in image_files]
|
| 670 |
-
assert all(
|
| 671 |
-
images[0].shape == im.shape for im in images
|
| 672 |
-
), f"Found some images with a different shape: {[im.shape for im in images]}"
|
| 673 |
-
|
| 674 |
-
# Save images as a gif
|
| 675 |
-
gif_output_path = f"{image_folder_path}/{gif_filename}"
|
| 676 |
-
imageio.mimsave(gif_output_path, images, duration=0.1)
|
| 677 |
-
|
| 678 |
-
return
|
| 679 |
-
|
| 680 |
-
|
| 681 |
def main(
|
| 682 |
cfg: CfgNode,
|
| 683 |
rgb_image: str,
|
|
|
|
| 19 |
import logging
|
| 20 |
import os
|
| 21 |
import time
|
|
|
|
| 22 |
from typing import Any
|
| 23 |
|
| 24 |
import imageio
|
|
|
|
| 33 |
from detectron2.structures import instances
|
| 34 |
from detectron2.utils import comm
|
| 35 |
from detectron2.utils.logger import setup_logger
|
|
|
|
| 36 |
|
| 37 |
from mask2former import (
|
| 38 |
add_maskformer2_config,
|
| 39 |
add_motionnet_config,
|
| 40 |
)
|
| 41 |
from utilities import prediction_to_json
|
| 42 |
+
from visualization import (
|
| 43 |
+
draw_line,
|
| 44 |
+
generate_rotation_visualization,
|
| 45 |
+
generate_translation_visualization,
|
| 46 |
+
batch_trim,
|
| 47 |
+
create_gif,
|
| 48 |
+
)
|
| 49 |
|
| 50 |
# import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint, in order to
|
| 51 |
# replicate model loading without the overhead of setting up an OPDTrainer
|
|
|
|
| 68 |
1: "translation",
|
| 69 |
}
|
| 70 |
|
|
|
|
| 71 |
ARROW_COLOR = [0, 1, 0] # green
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
def get_parser() -> argparse.ArgumentParser:
|
|
|
|
| 339 |
return out
|
| 340 |
|
| 341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
def main(
|
| 343 |
cfg: CfgNode,
|
| 344 |
rgb_image: str,
|
requirements.txt
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
h5py==3.9.0
|
| 2 |
imageio==2.31.3
|
| 3 |
-
open3d==0.17.0
|
| 4 |
opencv-python==4.8.0.76
|
| 5 |
pandas==2.1.0
|
| 6 |
pycocotools==2.0.7
|
|
@@ -8,5 +7,8 @@ scikit-image==0.21.0
|
|
| 8 |
scikit-learn==1.3.0
|
| 9 |
scipy==1.11.2
|
| 10 |
timm==0.9.7
|
|
|
|
|
|
|
|
|
|
| 11 |
detectron2 @ git+https://github.com/facebookresearch/detectron2.git@fc9c33b1f6e5d4c37bbb46dde19af41afc1ddb2a
|
| 12 |
-e mask2former/modeling/pixel_decoder/ops/
|
|
|
|
| 1 |
h5py==3.9.0
|
| 2 |
imageio==2.31.3
|
|
|
|
| 3 |
opencv-python==4.8.0.76
|
| 4 |
pandas==2.1.0
|
| 5 |
pycocotools==2.0.7
|
|
|
|
| 7 |
scikit-learn==1.3.0
|
| 8 |
scipy==1.11.2
|
| 9 |
timm==0.9.7
|
| 10 |
+
black==23.9.1
|
| 11 |
+
gradio==3.44.3
|
| 12 |
+
huggingface-hub==0.17.2
|
| 13 |
detectron2 @ git+https://github.com/facebookresearch/detectron2.git@fc9c33b1f6e5d4c37bbb46dde19af41afc1ddb2a
|
| 14 |
-e mask2former/modeling/pixel_decoder/ops/
|
visualization.py
ADDED
|
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from copy import deepcopy
|
| 3 |
+
|
| 4 |
+
import imageio
|
| 5 |
+
import open3d as o3d
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image, ImageChops
|
| 8 |
+
|
| 9 |
+
POINT_COLOR = [1, 0, 0] # red for demonstration
|
| 10 |
+
ARROW_COLOR = [0, 1, 0] # green
|
| 11 |
+
IMAGE_EXTENSIONS = (".png", ".jpg", ".jpeg")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def generate_rotation_visualization(
|
| 15 |
+
pcd: o3d.geometry.PointCloud,
|
| 16 |
+
axis_arrow: o3d.geometry.TriangleMesh,
|
| 17 |
+
mask: np.ndarray,
|
| 18 |
+
axis_vector: np.ndarray,
|
| 19 |
+
origin: np.ndarray,
|
| 20 |
+
range_min: float,
|
| 21 |
+
range_max: float,
|
| 22 |
+
num_samples: int,
|
| 23 |
+
output_dir: str,
|
| 24 |
+
) -> None:
|
| 25 |
+
"""
|
| 26 |
+
Generate visualization files for a rotation motion of a part.
|
| 27 |
+
|
| 28 |
+
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
| 29 |
+
:param axis_arrow: mesh object representing axis arrow of rotation to be rendered in visualization
|
| 30 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
| 31 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
| 32 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
| 33 |
+
:param range_min: float representing the minimum range of motion in radians
|
| 34 |
+
:param range_max: float representing the maximum range of motion in radians
|
| 35 |
+
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
| 36 |
+
:param output_dir: string path to directory in which to save visualization output
|
| 37 |
+
"""
|
| 38 |
+
angle_in_radians = np.linspace(range_min, range_max, num_samples)
|
| 39 |
+
angles_in_degrees = angle_in_radians * 180 / np.pi
|
| 40 |
+
|
| 41 |
+
for idx, angle_in_degrees in enumerate(angles_in_degrees):
|
| 42 |
+
# Make a copy of your original point cloud and arrow for each rotation
|
| 43 |
+
rotated_pcd = deepcopy(pcd)
|
| 44 |
+
rotated_arrow = deepcopy(axis_arrow)
|
| 45 |
+
|
| 46 |
+
angle_rad = np.radians(angle_in_degrees)
|
| 47 |
+
rotated_pcd = rotate_part(rotated_pcd, mask, axis_vector, origin, angle_rad)
|
| 48 |
+
|
| 49 |
+
# Create a Visualizer object for each rotation
|
| 50 |
+
vis = o3d.visualization.Visualizer()
|
| 51 |
+
vis.create_window(visible=False)
|
| 52 |
+
|
| 53 |
+
# Add the rotated geometries
|
| 54 |
+
vis.add_geometry(rotated_pcd)
|
| 55 |
+
vis.add_geometry(rotated_arrow)
|
| 56 |
+
|
| 57 |
+
# Apply the additional rotation around x-axis if desired
|
| 58 |
+
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
| 59 |
+
rotation_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
| 60 |
+
rotated_pcd.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
| 61 |
+
rotated_arrow.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
| 62 |
+
|
| 63 |
+
# Capture and save the image
|
| 64 |
+
output_filename = f"{output_dir}/{idx}.png"
|
| 65 |
+
vis.capture_screen_image(output_filename, do_render=True)
|
| 66 |
+
vis.destroy_window()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def generate_translation_visualization(
|
| 70 |
+
pcd: o3d.geometry.PointCloud,
|
| 71 |
+
axis_arrow: o3d.geometry.TriangleMesh,
|
| 72 |
+
mask: np.ndarray,
|
| 73 |
+
end: np.ndarray,
|
| 74 |
+
range_min: float,
|
| 75 |
+
range_max: float,
|
| 76 |
+
num_samples: int,
|
| 77 |
+
output_dir: str,
|
| 78 |
+
) -> None:
|
| 79 |
+
"""
|
| 80 |
+
Generate visualization files for a translation motion of a part.
|
| 81 |
+
|
| 82 |
+
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
| 83 |
+
:param axis_arrow: mesh object representing axis arrow of translation to be rendered in visualization
|
| 84 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
| 85 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
| 86 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of translation
|
| 87 |
+
:param range_min: float representing the minimum range of motion
|
| 88 |
+
:param range_max: float representing the maximum range of motion
|
| 89 |
+
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
| 90 |
+
:param output_dir: string path to directory in which to save visualization output
|
| 91 |
+
"""
|
| 92 |
+
translate_distances = np.linspace(range_min, range_max, num_samples)
|
| 93 |
+
for idx, translate_distance in enumerate(translate_distances):
|
| 94 |
+
translated_pcd = deepcopy(pcd)
|
| 95 |
+
translated_arrow = deepcopy(axis_arrow)
|
| 96 |
+
|
| 97 |
+
translated_pcd = translate_part(translated_pcd, mask, end, translate_distance.item())
|
| 98 |
+
|
| 99 |
+
# Create a Visualizer object for each rotation
|
| 100 |
+
vis = o3d.visualization.Visualizer()
|
| 101 |
+
vis.create_window(visible=False)
|
| 102 |
+
|
| 103 |
+
# Add the translated geometries
|
| 104 |
+
vis.add_geometry(translated_pcd)
|
| 105 |
+
vis.add_geometry(translated_arrow)
|
| 106 |
+
|
| 107 |
+
# Apply the additional rotation around x-axis if desired
|
| 108 |
+
# TODO: not sure why we need this rotation for the translation, and when it would be desired
|
| 109 |
+
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
| 110 |
+
R = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
| 111 |
+
translated_pcd.rotate(R, center=translated_pcd.get_center())
|
| 112 |
+
translated_arrow.rotate(R, center=translated_pcd.get_center())
|
| 113 |
+
|
| 114 |
+
# Capture and save the image
|
| 115 |
+
output_filename = f"{output_dir}/{idx}.png"
|
| 116 |
+
vis.capture_screen_image(output_filename, do_render=True)
|
| 117 |
+
vis.destroy_window()
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def get_rotation_matrix_from_vectors(vec1: np.ndarray, vec2: np.ndarray) -> np.ndarray:
|
| 121 |
+
"""
|
| 122 |
+
Find the rotation matrix that aligns vec1 to vec2
|
| 123 |
+
|
| 124 |
+
:param vec1: A 3d "source" vector
|
| 125 |
+
:param vec2: A 3d "destination" vector
|
| 126 |
+
:return: A transform matrix (3x3) which when applied to vec1, aligns it with vec2.
|
| 127 |
+
"""
|
| 128 |
+
a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3)
|
| 129 |
+
v = np.cross(a, b)
|
| 130 |
+
c = np.dot(a, b)
|
| 131 |
+
s = np.linalg.norm(v)
|
| 132 |
+
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
|
| 133 |
+
rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s**2))
|
| 134 |
+
return rotation_matrix
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def draw_line(start_point: np.ndarray, end_point: np.ndarray) -> o3d.geometry.TriangleMesh:
|
| 138 |
+
"""
|
| 139 |
+
Generate 3D mesh representing axis from start_point to end_point.
|
| 140 |
+
|
| 141 |
+
:param start_point: np.ndarray of dimensions (3, ) representing the start point of the axis
|
| 142 |
+
:param end_point: np.ndarray of dimensions (3, ) representing the end point of the axis
|
| 143 |
+
:return: mesh object representing axis from start to end
|
| 144 |
+
"""
|
| 145 |
+
# Compute direction vector and normalize it
|
| 146 |
+
direction_vector = end_point - start_point
|
| 147 |
+
normalized_vector = direction_vector / np.linalg.norm(direction_vector)
|
| 148 |
+
|
| 149 |
+
# Compute the rotation matrix to align the Z-axis with the desired direction
|
| 150 |
+
target_vector = np.array([0, 0, 1])
|
| 151 |
+
rot_mat = get_rotation_matrix_from_vectors(target_vector, normalized_vector)
|
| 152 |
+
|
| 153 |
+
# Create the cylinder (shaft of the arrow)
|
| 154 |
+
cylinder_length = 0.9 # 90% of the total arrow length, you can adjust as needed
|
| 155 |
+
cylinder_radius = 0.01 # Adjust the thickness of the arrow shaft
|
| 156 |
+
cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=cylinder_radius, height=cylinder_length)
|
| 157 |
+
|
| 158 |
+
# Move base of cylinder to origin, rotate, then translate to start_point
|
| 159 |
+
cylinder.translate([0, 0, 0])
|
| 160 |
+
cylinder.rotate(rot_mat, center=[0, 0, 0])
|
| 161 |
+
cylinder.translate(start_point)
|
| 162 |
+
|
| 163 |
+
# Create the cone (head of the arrow)
|
| 164 |
+
cone_height = 0.1 # 10% of the total arrow length, adjust as needed
|
| 165 |
+
cone_radius = 0.03 # Adjust the size of the arrowhead
|
| 166 |
+
cone = o3d.geometry.TriangleMesh.create_cone(radius=cone_radius, height=cone_height)
|
| 167 |
+
|
| 168 |
+
# Move base of cone to origin, rotate, then translate to end of cylinder
|
| 169 |
+
cone.translate([-0, 0, 0])
|
| 170 |
+
cone.rotate(rot_mat, center=[0, 0, 0])
|
| 171 |
+
cone.translate(start_point + normalized_vector * 0.4)
|
| 172 |
+
|
| 173 |
+
arrow = cylinder + cone
|
| 174 |
+
return arrow
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def rotate_part(
|
| 178 |
+
pcd: o3d.geometry.PointCloud, mask: np.ndarray, axis_vector: np.ndarray, origin: np.ndarray, angle_rad: float
|
| 179 |
+
) -> o3d.geometry.PointCloud:
|
| 180 |
+
"""
|
| 181 |
+
Generate rotated point cloud of mask based on provided angle around axis.
|
| 182 |
+
|
| 183 |
+
:param pcd: point cloud object representing points of image
|
| 184 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
| 185 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
| 186 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
| 187 |
+
:param angle_rad: angle in radians to rotate mask part
|
| 188 |
+
:return: point cloud object after rotation of masked part
|
| 189 |
+
"""
|
| 190 |
+
# Get the coordinates of the point cloud as a numpy array
|
| 191 |
+
points_np = np.asarray(pcd.points)
|
| 192 |
+
|
| 193 |
+
# Convert point cloud colors to numpy array for easier manipulation
|
| 194 |
+
colors_np = np.asarray(pcd.colors)
|
| 195 |
+
|
| 196 |
+
# Create skew-symmetric matrix from end
|
| 197 |
+
K = np.array(
|
| 198 |
+
[
|
| 199 |
+
[0, -axis_vector[2], axis_vector[1]],
|
| 200 |
+
[axis_vector[2], 0, -axis_vector[0]],
|
| 201 |
+
[-axis_vector[1], axis_vector[0], 0],
|
| 202 |
+
]
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
# Compute rotation matrix using Rodrigues' formula
|
| 206 |
+
R = np.eye(3) + np.sin(angle_rad) * K + (1 - np.cos(angle_rad)) * np.dot(K, K)
|
| 207 |
+
|
| 208 |
+
# Iterate over the mask and rotate the points corresponding to the object pixels
|
| 209 |
+
for i in range(mask.shape[0]):
|
| 210 |
+
for j in range(mask.shape[1]):
|
| 211 |
+
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
| 212 |
+
point_index = i * mask.shape[1] + j
|
| 213 |
+
|
| 214 |
+
# Translate the point such that the rotation origin is at the world origin
|
| 215 |
+
translated_point = points_np[point_index] - origin
|
| 216 |
+
|
| 217 |
+
# Rotate the translated point
|
| 218 |
+
rotated_point = np.dot(R, translated_point)
|
| 219 |
+
|
| 220 |
+
# Translate the point back
|
| 221 |
+
points_np[point_index] = rotated_point + origin
|
| 222 |
+
|
| 223 |
+
colors_np[point_index] = POINT_COLOR
|
| 224 |
+
|
| 225 |
+
# Update the point cloud's coordinates
|
| 226 |
+
pcd.points = o3d.utility.Vector3dVector(points_np)
|
| 227 |
+
|
| 228 |
+
# Update point cloud colors
|
| 229 |
+
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
| 230 |
+
|
| 231 |
+
return pcd
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def translate_part(pcd, mask, axis_vector, distance):
|
| 235 |
+
"""
|
| 236 |
+
Generate translated point cloud of mask based on provided angle around axis.
|
| 237 |
+
|
| 238 |
+
:param pcd: point cloud object representing points of image
|
| 239 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
| 240 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
| 241 |
+
:param distance: distance within coordinate system to translate mask part
|
| 242 |
+
:return: point cloud object after translation of masked part
|
| 243 |
+
"""
|
| 244 |
+
normalized_vector = axis_vector / np.linalg.norm(axis_vector)
|
| 245 |
+
translation_vector = normalized_vector * distance
|
| 246 |
+
|
| 247 |
+
# Convert point cloud colors to numpy array for easier manipulation
|
| 248 |
+
colors_np = np.asarray(pcd.colors)
|
| 249 |
+
|
| 250 |
+
# Get the coordinates of the point cloud as a numpy array
|
| 251 |
+
points_np = np.asarray(pcd.points)
|
| 252 |
+
|
| 253 |
+
# Iterate over the mask and assign the color to the points corresponding to the object pixels
|
| 254 |
+
for i in range(mask.shape[0]):
|
| 255 |
+
for j in range(mask.shape[1]):
|
| 256 |
+
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
| 257 |
+
point_index = i * mask.shape[1] + j
|
| 258 |
+
colors_np[point_index] = POINT_COLOR
|
| 259 |
+
points_np[point_index] += translation_vector
|
| 260 |
+
|
| 261 |
+
# Update point cloud colors
|
| 262 |
+
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
| 263 |
+
|
| 264 |
+
# Update the point cloud's coordinates
|
| 265 |
+
pcd.points = o3d.utility.Vector3dVector(points_np)
|
| 266 |
+
|
| 267 |
+
return pcd
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def batch_trim(images_path: str, save_path: str, identical: bool = False) -> None:
|
| 271 |
+
"""
|
| 272 |
+
Trim white spaces from all images in the given path and save new images to folder.
|
| 273 |
+
|
| 274 |
+
:param images_path: local path to folder containing all images. Images must have the extension ".png", ".jpg", or
|
| 275 |
+
".jpeg".
|
| 276 |
+
:param save_path: local path to folder in which to save trimmed images
|
| 277 |
+
:param identical: if True, will apply same crop to all images, else each image will have its whitespace trimmed
|
| 278 |
+
independently. Note that in the latter case, each image may have a slightly different size.
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
def get_trim(im):
|
| 282 |
+
"""Trim whitespace from an image and return the cropped image."""
|
| 283 |
+
bg = Image.new(im.mode, im.size, im.getpixel((0, 0)))
|
| 284 |
+
diff = ImageChops.difference(im, bg)
|
| 285 |
+
diff = ImageChops.add(diff, diff, 2.0, -100)
|
| 286 |
+
bbox = diff.getbbox()
|
| 287 |
+
return bbox
|
| 288 |
+
|
| 289 |
+
if identical: #
|
| 290 |
+
images = []
|
| 291 |
+
optimal_box = None
|
| 292 |
+
|
| 293 |
+
# load all images
|
| 294 |
+
for image_file in sorted(os.listdir(images_path)):
|
| 295 |
+
if image_file.endswith(IMAGE_EXTENSIONS):
|
| 296 |
+
image_path = os.path.join(images_path, image_file)
|
| 297 |
+
images.append(Image.open(image_path))
|
| 298 |
+
|
| 299 |
+
# find optimal box size
|
| 300 |
+
for im in images:
|
| 301 |
+
bbox = get_trim(im)
|
| 302 |
+
if bbox is None:
|
| 303 |
+
bbox = (0, 0, im.size[0], im.size[1]) # bound entire image
|
| 304 |
+
|
| 305 |
+
if optimal_box is None:
|
| 306 |
+
optimal_box = bbox
|
| 307 |
+
else:
|
| 308 |
+
optimal_box = (
|
| 309 |
+
min(optimal_box[0], bbox[0]),
|
| 310 |
+
min(optimal_box[1], bbox[1]),
|
| 311 |
+
max(optimal_box[2], bbox[2]),
|
| 312 |
+
max(optimal_box[3], bbox[3]),
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# apply cropping, if optimal box was found
|
| 316 |
+
for idx, im in enumerate(images):
|
| 317 |
+
im.crop(optimal_box)
|
| 318 |
+
im.save(os.path.join(save_path, f"{idx}.png"))
|
| 319 |
+
im.close()
|
| 320 |
+
|
| 321 |
+
else: # trim each image separately
|
| 322 |
+
for image_file in os.listdir(images_path):
|
| 323 |
+
if image_file.endswith(IMAGE_EXTENSIONS):
|
| 324 |
+
image_path = os.path.join(images_path, image_file)
|
| 325 |
+
with Image.open(image_path) as im:
|
| 326 |
+
bbox = get_trim(im)
|
| 327 |
+
trimmed = im.crop(bbox) if bbox else im
|
| 328 |
+
trimmed.save(os.path.join(save_path, image_file))
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def create_gif(image_folder_path: str, num_samples: int, gif_filename: str = "output.gif") -> None:
|
| 332 |
+
"""
|
| 333 |
+
Create gif out of folder of images and save to file.
|
| 334 |
+
|
| 335 |
+
:param image_folder_path: path to folder containing images (non-recursive). Assumes images are named as {i}.png for
|
| 336 |
+
each of i from 0 to num_samples.
|
| 337 |
+
:param num_samples: number of sampled images to compile into gif.
|
| 338 |
+
:param gif_filename: filename for gif, defaults to "output.gif"
|
| 339 |
+
"""
|
| 340 |
+
# Generate a list of image filenames (assuming the images are saved as 0.png, 1.png, etc.)
|
| 341 |
+
image_files = [f"{image_folder_path}/{i}.png" for i in range(num_samples)]
|
| 342 |
+
|
| 343 |
+
# Read the images using imageio
|
| 344 |
+
images = [imageio.imread(image_file) for image_file in image_files]
|
| 345 |
+
assert all(
|
| 346 |
+
images[0].shape == im.shape for im in images
|
| 347 |
+
), f"Found some images with a different shape: {[im.shape for im in images]}"
|
| 348 |
+
|
| 349 |
+
# Save images as a gif
|
| 350 |
+
gif_output_path = f"{image_folder_path}/{gif_filename}"
|
| 351 |
+
imageio.mimsave(gif_output_path, images, duration=0.1)
|
| 352 |
+
|
| 353 |
+
return
|