adding files
Browse files- README.md +9 -0
- app.py +30 -0
- requirements.txt +4 -0
README.md
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: SQL Space
|
| 3 |
+
emoji: 🐍
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: static
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: false
|
| 9 |
+
---
|
app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
+
import uvicorn
|
| 5 |
+
|
| 6 |
+
# Load model and tokenizer once at startup
|
| 7 |
+
MODEL_NAME = "16pramodh/t2s_model"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
| 10 |
+
|
| 11 |
+
# Create FastAPI app
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
|
| 14 |
+
# Request body format
|
| 15 |
+
class QueryRequest(BaseModel):
|
| 16 |
+
text: str
|
| 17 |
+
|
| 18 |
+
@app.post("/predict")
|
| 19 |
+
def predict(request: QueryRequest):
|
| 20 |
+
try:
|
| 21 |
+
inputs = tokenizer(request.text, return_tensors="pt")
|
| 22 |
+
outputs = model.generate(**inputs, max_length=256)
|
| 23 |
+
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 24 |
+
return {"sql": sql_query}
|
| 25 |
+
except Exception as e:
|
| 26 |
+
return {"error": str(e)}
|
| 27 |
+
|
| 28 |
+
# For local testing
|
| 29 |
+
if __name__ == "__main__":
|
| 30 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.41.2
|
| 2 |
+
torch==2.3.0
|
| 3 |
+
fastapi==0.111.0
|
| 4 |
+
uvicorn==0.30.1
|