File size: 15,874 Bytes
48c2ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f69b9b80550>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f69b9b77a50>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1674286732175804600,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAL0DBPvY9/zsDnxA/L0DBPvY9/zsDnxA/L0DBPvY9/zsDnxA/L0DBPvY9/zsDnxA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+glsP0BNHj5AWm+/MruRvnd6Sr+23jo+2EPOvg9djj9mmrA/COQfv5O1yj7qTIU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAvQME+9j3/OwOfED+fiEA8xUqIOzCGdDsvQME+9j3/OwOfED+fiEA8xUqIOzCGdDsvQME+9j3/OwOfED+fiEA8xUqIOzCGdDsvQME+9j3/OwOfED+fiEA8xUqIOzCGdDuUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[0.3774428  0.00778937 0.5649263 ]\n [0.3774428  0.00778937 0.5649263 ]\n [0.3774428  0.00778937 0.5649263 ]\n [0.3774428  0.00778937 0.5649263 ]]",
        "desired_goal": "[[ 0.92202723  0.15459156 -0.93497086]\n [-0.2846313  -0.79093117  0.1824902 ]\n [-0.40286136  1.1122149   1.3797119 ]\n [-0.62457323  0.39591655  0.26035243]]",
        "observation": "[[0.3774428  0.00778937 0.5649263  0.01175132 0.0041593  0.00373114]\n [0.3774428  0.00778937 0.5649263  0.01175132 0.0041593  0.00373114]\n [0.3774428  0.00778937 0.5649263  0.01175132 0.0041593  0.00373114]\n [0.3774428  0.00778937 0.5649263  0.01175132 0.0041593  0.00373114]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6Tbdvfl2EL4+p1c9WD7uvCmDiz3cC3o+o3kYvhXXg72JLFw9GWrTPLt9LD21E647lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.10801489 -0.14107884  0.05264973]\n [-0.02908246  0.06812126  0.24418586]\n [-0.1489015  -0.06437508  0.05375341]\n [ 0.02580743  0.04211209  0.00531241]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImyDqPgCp7b+UhpRSlIwBbJRLMowBdJRHQKTZFc8kleF1fZQoaAZoCWgPQwj+tbxyvV0RwJSGlFKUaBVLMmgWR0Ck2Nlf7aZhdX2UKGgGaAloD0MIy9b6IqEt8L+UhpRSlGgVSzJoFkdApNiVpblijXV9lChoBmgJaA9DCIs2x7lN+BXAlIaUUpRoFUsyaBZHQKTYVy5I6Kd1fZQoaAZoCWgPQwhiZp/HKE8JwJSGlFKUaBVLMmgWR0Ck2jxiw0O3dX2UKGgGaAloD0MIK4arAyDuDMCUhpRSlGgVSzJoFkdApNn/58BuGnV9lChoBmgJaA9DCFmHo6t0dw3AlIaUUpRoFUsyaBZHQKTZu74i5d51fZQoaAZoCWgPQwiBfAkVHN75v5SGlFKUaBVLMmgWR0Ck2X1mapgkdX2UKGgGaAloD0MIyuGTTiSY57+UhpRSlGgVSzJoFkdApNtUPhAGCHV9lChoBmgJaA9DCCnPvBx2/wjAlIaUUpRoFUsyaBZHQKTbF9fCyhV1fZQoaAZoCWgPQwhnmUUotsINwJSGlFKUaBVLMmgWR0Ck2tQLE1l5dX2UKGgGaAloD0MItI6qJojaF8CUhpRSlGgVSzJoFkdApNqVqi48U3V9lChoBmgJaA9DCEM4ZtmTIAPAlIaUUpRoFUsyaBZHQKTcX2X9itt1fZQoaAZoCWgPQwjSj4ZT5mb/v5SGlFKUaBVLMmgWR0Ck3CMhouf3dX2UKGgGaAloD0MIgJvFi4Vh9r+UhpRSlGgVSzJoFkdApNvfGZNO/XV9lChoBmgJaA9DCHyakxeZkBTAlIaUUpRoFUsyaBZHQKTboMJhOQB1fZQoaAZoCWgPQwiXHeIftpQJwJSGlFKUaBVLMmgWR0Ck3Wte2NNrdX2UKGgGaAloD0MIutqK/WX3CsCUhpRSlGgVSzJoFkdApN0uy5Zr6HV9lChoBmgJaA9DCLSR66aUl/S/lIaUUpRoFUsyaBZHQKTc6wSrYGt1fZQoaAZoCWgPQwhIbk26LdH3v5SGlFKUaBVLMmgWR0Ck3Kybx3FDdX2UKGgGaAloD0MIh+EjYkok67+UhpRSlGgVSzJoFkdApN5r0Yj0MHV9lChoBmgJaA9DCCI4LuOmxvm/lIaUUpRoFUsyaBZHQKTeL29L6DZ1fZQoaAZoCWgPQwj3WWWmtH4RwJSGlFKUaBVLMmgWR0Ck3eti6QNkdX2UKGgGaAloD0MIVYhH4uWJF8CUhpRSlGgVSzJoFkdApN2tRBNVR3V9lChoBmgJaA9DCLtiRnh7UA/AlIaUUpRoFUsyaBZHQKTfgAuIyj51fZQoaAZoCWgPQwjItaFinC8UwJSGlFKUaBVLMmgWR0Ck30OieumrdX2UKGgGaAloD0MI2INJ8fGJ4b+UhpRSlGgVSzJoFkdApN7/zFuNxXV9lChoBmgJaA9DCNzUQPM5t/W/lIaUUpRoFUsyaBZHQKTewWvbGm11fZQoaAZoCWgPQwijryDNWFQIwJSGlFKUaBVLMmgWR0Ck4JBr30wrdX2UKGgGaAloD0MIp7BSQUXV7b+UhpRSlGgVSzJoFkdApOBUH4XXRXV9lChoBmgJaA9DCDcAGxAh7vW/lIaUUpRoFUsyaBZHQKTgEHB1s+F1fZQoaAZoCWgPQwgiMxe4PBYOwJSGlFKUaBVLMmgWR0Ck39IQFs55dX2UKGgGaAloD0MII4RHG0esC8CUhpRSlGgVSzJoFkdApOGiTGHYYnV9lChoBmgJaA9DCHI0R1Z+2fe/lIaUUpRoFUsyaBZHQKThZfa6BiF1fZQoaAZoCWgPQwgPQ6uTM5T+v5SGlFKUaBVLMmgWR0Ck4SIRh+fAdX2UKGgGaAloD0MIKbLWUGqPD8CUhpRSlGgVSzJoFkdApODjguRLb3V9lChoBmgJaA9DCO4G0VrRRgzAlIaUUpRoFUsyaBZHQKTitUBGQS11fZQoaAZoCWgPQwjjNa/qrJb/v5SGlFKUaBVLMmgWR0Ck4njrAxi5dX2UKGgGaAloD0MIHjaRmQuc8r+UhpRSlGgVSzJoFkdApOI1NDc/MXV9lChoBmgJaA9DCISaIVUU7xLAlIaUUpRoFUsyaBZHQKTh9tb9qDd1fZQoaAZoCWgPQwgDC2DKwMEQwJSGlFKUaBVLMmgWR0Ck48bUG3WndX2UKGgGaAloD0MIgxd9BWkmDMCUhpRSlGgVSzJoFkdApOOKaVlf7nV9lChoBmgJaA9DCBDs+C8QBPO/lIaUUpRoFUsyaBZHQKTjRmoR7JJ1fZQoaAZoCWgPQwjuI7cm3Vb+v5SGlFKUaBVLMmgWR0Ck4wfyf+S9dX2UKGgGaAloD0MInYL8bOQqE8CUhpRSlGgVSzJoFkdApOTFeBxxUHV9lChoBmgJaA9DCNDSFWwjHva/lIaUUpRoFUsyaBZHQKTkiSIxgzB1fZQoaAZoCWgPQwhypDMw8nIAwJSGlFKUaBVLMmgWR0Ck5EUADJU6dX2UKGgGaAloD0MIsFWCxeHMAMCUhpRSlGgVSzJoFkdApOQGoP07KnV9lChoBmgJaA9DCMgMVMa/z+i/lIaUUpRoFUsyaBZHQKTl2XlbNbF1fZQoaAZoCWgPQwgeb/JbdHL4v5SGlFKUaBVLMmgWR0Ck5Z1XV9WqdX2UKGgGaAloD0MIn1voSgRqFcCUhpRSlGgVSzJoFkdApOVZg1FYuHV9lChoBmgJaA9DCJnYfFwb6vO/lIaUUpRoFUsyaBZHQKTlGzdk8Rt1fZQoaAZoCWgPQwj/BBcrajAOwJSGlFKUaBVLMmgWR0Ck5t9bPhQ4dX2UKGgGaAloD0MIQ1a3ek5aA8CUhpRSlGgVSzJoFkdApOaizLOiWXV9lChoBmgJaA9DCDze5LfoZOO/lIaUUpRoFUsyaBZHQKTmXuE25x11fZQoaAZoCWgPQwhpdAexM8UBwJSGlFKUaBVLMmgWR0Ck5iCdz4lAdX2UKGgGaAloD0MIZvhPN1Ag+r+UhpRSlGgVSzJoFkdApOf+YrrgO3V9lChoBmgJaA9DCITTghd95Q/AlIaUUpRoFUsyaBZHQKTnwgDA8CB1fZQoaAZoCWgPQwivesA8ZKoAwJSGlFKUaBVLMmgWR0Ck534w7DEWdX2UKGgGaAloD0MIoWXdPxbCAMCUhpRSlGgVSzJoFkdApOdAEjgQ6XV9lChoBmgJaA9DCOyEl+DUBwbAlIaUUpRoFUsyaBZHQKTpFi6QNkR1fZQoaAZoCWgPQwg08nnFU+8LwJSGlFKUaBVLMmgWR0Ck6NnhKlHjdX2UKGgGaAloD0MIOL9hokEK5r+UhpRSlGgVSzJoFkdApOiWKoAGS3V9lChoBmgJaA9DCEgWMIFbNwLAlIaUUpRoFUsyaBZHQKToV8R+SbJ1fZQoaAZoCWgPQwhU4jrGFRf+v5SGlFKUaBVLMmgWR0Ck6jrZSNwSdX2UKGgGaAloD0MIi1OthVko9r+UhpRSlGgVSzJoFkdApOn+pjtojHV9lChoBmgJaA9DCGzqPCr+jwHAlIaUUpRoFUsyaBZHQKTpuwaBI4F1fZQoaAZoCWgPQwiVgQNauoLnv5SGlFKUaBVLMmgWR0Ck6XzrNW2gdX2UKGgGaAloD0MIC2DKwAEtCMCUhpRSlGgVSzJoFkdApOtYlD4QBnV9lChoBmgJaA9DCD8djxmovBDAlIaUUpRoFUsyaBZHQKTrHElVtGd1fZQoaAZoCWgPQwgv+grSjIX/v5SGlFKUaBVLMmgWR0Ck6th2W6bwdX2UKGgGaAloD0MIvVErTN9r5r+UhpRSlGgVSzJoFkdApOqaIgvDg3V9lChoBmgJaA9DCE4oRMAhNAvAlIaUUpRoFUsyaBZHQKTsZEIgNgB1fZQoaAZoCWgPQwiuRnalZaQEwJSGlFKUaBVLMmgWR0Ck7Cfvv0AcdX2UKGgGaAloD0MI5BHcSNmiDcCUhpRSlGgVSzJoFkdApOvkFjd56nV9lChoBmgJaA9DCK/qrBbYo/C/lIaUUpRoFUsyaBZHQKTrpYVZcLV1fZQoaAZoCWgPQwhvRzgteBEOwJSGlFKUaBVLMmgWR0Ck7Xdb5dnkdX2UKGgGaAloD0MI3C3JAbv6A8CUhpRSlGgVSzJoFkdApO07AtWdVnV9lChoBmgJaA9DCPLNNjemRwDAlIaUUpRoFUsyaBZHQKTs9zjm0Vt1fZQoaAZoCWgPQwjarWUyHE//v5SGlFKUaBVLMmgWR0Ck7Ljlgc94dX2UKGgGaAloD0MIMbJkjuXd+r+UhpRSlGgVSzJoFkdApO6MAWBSUHV9lChoBmgJaA9DCC6RC87gb/+/lIaUUpRoFUsyaBZHQKTuT9n9Nvh1fZQoaAZoCWgPQwjd0mpI3AMOwJSGlFKUaBVLMmgWR0Ck7gwuM+/ydX2UKGgGaAloD0MIxy5RvTVQB8CUhpRSlGgVSzJoFkdApO3N2Pkq+nV9lChoBmgJaA9DCHZQiesYV/O/lIaUUpRoFUsyaBZHQKTvlwS8J2N1fZQoaAZoCWgPQwgN3lflQgUBwJSGlFKUaBVLMmgWR0Ck71qR+z+ndX2UKGgGaAloD0MIOQ68Wu7MDsCUhpRSlGgVSzJoFkdApO8WzUqhDnV9lChoBmgJaA9DCPoI/OHnXwXAlIaUUpRoFUsyaBZHQKTu2IhyKel1fZQoaAZoCWgPQwg+zjRh+4kJwJSGlFKUaBVLMmgWR0Ck8Lpo0ygxdX2UKGgGaAloD0MI7GmHvyYr/7+UhpRSlGgVSzJoFkdApPB+DjBEa3V9lChoBmgJaA9DCPZDbLBwUgTAlIaUUpRoFUsyaBZHQKTwOvJzT4N1fZQoaAZoCWgPQwjqz36kiIzkv5SGlFKUaBVLMmgWR0Ck7/yRKYiQdX2UKGgGaAloD0MId0mcFVHTA8CUhpRSlGgVSzJoFkdApPHs2zfJm3V9lChoBmgJaA9DCPjDz38Pnv+/lIaUUpRoFUsyaBZHQKTxsUYbbUR1fZQoaAZoCWgPQwiPqbuyC4bkv5SGlFKUaBVLMmgWR0Ck8W13EAHWdX2UKGgGaAloD0MIsHWpEfqZ5r+UhpRSlGgVSzJoFkdApPEvHzYmLXV9lChoBmgJaA9DCOeNk8K8JwnAlIaUUpRoFUsyaBZHQKTy9QiRnvl1fZQoaAZoCWgPQwglXTP5Zhvjv5SGlFKUaBVLMmgWR0Ck8rhdUsFudX2UKGgGaAloD0MIqAGDpE/r/r+UhpRSlGgVSzJoFkdApPJ0dkrf+HV9lChoBmgJaA9DCLYUkPY/gP2/lIaUUpRoFUsyaBZHQKTyNcZccEN1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}