Update training.ipynb
Browse files- training.ipynb +477 -233
training.ipynb
CHANGED
|
@@ -1,278 +1,522 @@
|
|
| 1 |
{
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
{
|
| 4 |
-
|
| 5 |
-
"
|
| 6 |
-
|
| 7 |
-
"source": [
|
| 8 |
-
"The primary codes below are based on [akpe12/JP-KR-ocr-translator-for-travel](https://github.com/akpe12/JP-KR-ocr-translator-for-travel)."
|
| 9 |
]
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
{
|
| 12 |
-
|
| 13 |
-
"
|
| 14 |
-
|
| 15 |
-
},
|
| 16 |
-
"source": [
|
| 17 |
-
"## Import"
|
| 18 |
]
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
{
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
"from transformers.models.encoder_decoder.modeling_encoder_decoder import EncoderDecoderModel\n",
|
| 46 |
-
"\n",
|
| 47 |
-
"# encoder_model_name = \"xlm-roberta-base\"\n",
|
| 48 |
-
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
| 49 |
-
"decoder_model_name = \"skt/kogpt2-base-v2\""
|
| 50 |
-
]
|
| 51 |
-
},
|
| 52 |
{
|
| 53 |
-
|
| 54 |
-
"
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
"source": [
|
| 60 |
-
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 61 |
-
"# device = torch.device(\"cpu\")\n",
|
| 62 |
-
"device, torch.cuda.device_count()"
|
| 63 |
]
|
|
|
|
|
|
|
|
|
|
| 64 |
},
|
| 65 |
{
|
| 66 |
-
|
| 67 |
-
"
|
| 68 |
-
|
| 69 |
-
|
|
|
|
| 70 |
},
|
| 71 |
-
"
|
| 72 |
-
|
| 73 |
-
"class GPT2Tokenizer(PreTrainedTokenizerFast):\n",
|
| 74 |
-
" def build_inputs_with_special_tokens(self, token_ids: List[int]) -> List[int]:\n",
|
| 75 |
-
" return token_ids + [self.eos_token_id] \n",
|
| 76 |
-
"\n",
|
| 77 |
-
"src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)\n",
|
| 78 |
-
"trg_tokenizer = GPT2Tokenizer.from_pretrained(decoder_model_name, bos_token='</s>', eos_token='</s>', unk_token='<unk>',\n",
|
| 79 |
-
" pad_token='<pad>', mask_token='<mask>')"
|
| 80 |
]
|
|
|
|
|
|
|
|
|
|
| 81 |
},
|
| 82 |
{
|
| 83 |
-
|
| 84 |
-
"
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
"
|
| 88 |
-
|
| 89 |
]
|
|
|
|
|
|
|
|
|
|
| 90 |
},
|
| 91 |
{
|
| 92 |
-
|
| 93 |
-
"
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
"source": [
|
| 99 |
-
"class PairedDataset:\n",
|
| 100 |
-
" def __init__(self, \n",
|
| 101 |
-
" src_tokenizer: PreTrainedTokenizerFast, tgt_tokenizer: PreTrainedTokenizerFast,\n",
|
| 102 |
-
" file_path: str\n",
|
| 103 |
-
" ):\n",
|
| 104 |
-
" self.src_tokenizer = src_tokenizer\n",
|
| 105 |
-
" self.trg_tokenizer = tgt_tokenizer\n",
|
| 106 |
-
" with open(file_path, 'r') as fd:\n",
|
| 107 |
-
" reader = csv.reader(fd)\n",
|
| 108 |
-
" next(reader)\n",
|
| 109 |
-
" self.data = [row for row in reader]\n",
|
| 110 |
-
"\n",
|
| 111 |
-
" def __getitem__(self, index: int) -> Dict[str, torch.Tensor]:\n",
|
| 112 |
-
"# with open('train_log.txt', 'a+') as log_file:\n",
|
| 113 |
-
"# log_file.write(f'reading data[{index}] {self.data[index]}\\n')\n",
|
| 114 |
-
" src, trg = self.data[index]\n",
|
| 115 |
-
" embeddings = self.src_tokenizer(src, return_attention_mask=False, return_token_type_ids=False)\n",
|
| 116 |
-
" embeddings['labels'] = self.trg_tokenizer.build_inputs_with_special_tokens(self.trg_tokenizer(trg, return_attention_mask=False)['input_ids'])\n",
|
| 117 |
-
"\n",
|
| 118 |
-
" return embeddings\n",
|
| 119 |
-
"\n",
|
| 120 |
-
" def __len__(self):\n",
|
| 121 |
-
" return len(self.data)\n",
|
| 122 |
-
" \n",
|
| 123 |
-
"DATA_ROOT = './output'\n",
|
| 124 |
-
"FILE_FFAC_FULL = 'ffac_full.csv'\n",
|
| 125 |
-
"FILE_FFAC_TEST = 'ffac_test.csv'\n",
|
| 126 |
-
"FILE_JA_KO_TRAIN = 'ja_ko_train.csv'\n",
|
| 127 |
-
"FILE_JA_KO_TEST = 'ja_ko_test.csv'\n",
|
| 128 |
-
"\n",
|
| 129 |
-
"# train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_FFAC_FULL}')\n",
|
| 130 |
-
"# eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_FFAC_TEST}') \n",
|
| 131 |
-
"train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_JA_KO_TRAIN}')\n",
|
| 132 |
-
"eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_JA_KO_TEST}') "
|
| 133 |
]
|
|
|
|
|
|
|
|
|
|
| 134 |
},
|
| 135 |
{
|
| 136 |
-
|
| 137 |
-
"
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
"
|
| 141 |
-
|
| 142 |
-
"# at the `src, trg = self.data[index]`\n",
|
| 143 |
-
"# The `cat ffac_full.csv tteb_train.csv > ja_ko_train.csv` command may be the reason.\n",
|
| 144 |
-
"# the last row of first csv and first row of second csv is merged and that's why 3rd column is created (which arouse ValueError)\n",
|
| 145 |
-
"# debug_data = train_dataset.data\n"
|
| 146 |
]
|
|
|
|
|
|
|
|
|
|
| 147 |
},
|
| 148 |
{
|
| 149 |
-
|
| 150 |
-
"
|
| 151 |
-
|
|
|
|
|
|
|
| 152 |
},
|
| 153 |
-
"
|
| 154 |
-
|
| 155 |
]
|
|
|
|
|
|
|
|
|
|
| 156 |
},
|
| 157 |
{
|
| 158 |
-
|
| 159 |
-
"
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
"source": [
|
| 165 |
-
"model = EncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
| 166 |
-
" encoder_model_name,\n",
|
| 167 |
-
" decoder_model_name,\n",
|
| 168 |
-
" pad_token_id=trg_tokenizer.bos_token_id,\n",
|
| 169 |
-
")\n",
|
| 170 |
-
"model.config.decoder_start_token_id = trg_tokenizer.bos_token_id"
|
| 171 |
]
|
|
|
|
|
|
|
|
|
|
| 172 |
},
|
| 173 |
{
|
| 174 |
-
|
| 175 |
-
"
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
"source": [
|
| 181 |
-
"# for Trainer\n",
|
| 182 |
-
"import wandb\n",
|
| 183 |
-
"\n",
|
| 184 |
-
"collate_fn = DataCollatorForSeq2Seq(src_tokenizer, model)\n",
|
| 185 |
-
"wandb.init(project=\"fftr-poc1\", name='jbert+kogpt2')\n",
|
| 186 |
-
"\n",
|
| 187 |
-
"arguments = Seq2SeqTrainingArguments(\n",
|
| 188 |
-
" output_dir='dump',\n",
|
| 189 |
-
" do_train=True,\n",
|
| 190 |
-
" do_eval=True,\n",
|
| 191 |
-
" evaluation_strategy=\"epoch\",\n",
|
| 192 |
-
" save_strategy=\"epoch\",\n",
|
| 193 |
-
" num_train_epochs=3,\n",
|
| 194 |
-
" # num_train_epochs=25,\n",
|
| 195 |
-
" per_device_train_batch_size=30,\n",
|
| 196 |
-
" # per_device_train_batch_size=64,\n",
|
| 197 |
-
" per_device_eval_batch_size=30,\n",
|
| 198 |
-
" # per_device_eval_batch_size=64,\n",
|
| 199 |
-
" warmup_ratio=0.1,\n",
|
| 200 |
-
" gradient_accumulation_steps=4,\n",
|
| 201 |
-
" save_total_limit=5,\n",
|
| 202 |
-
" dataloader_num_workers=1,\n",
|
| 203 |
-
" fp16=True,\n",
|
| 204 |
-
" load_best_model_at_end=True,\n",
|
| 205 |
-
" report_to='wandb'\n",
|
| 206 |
-
")\n",
|
| 207 |
-
"\n",
|
| 208 |
-
"trainer = Trainer(\n",
|
| 209 |
-
" model,\n",
|
| 210 |
-
" arguments,\n",
|
| 211 |
-
" data_collator=collate_fn,\n",
|
| 212 |
-
" train_dataset=train_dataset,\n",
|
| 213 |
-
" eval_dataset=eval_dataset\n",
|
| 214 |
-
")"
|
| 215 |
]
|
|
|
|
|
|
|
|
|
|
| 216 |
},
|
| 217 |
{
|
| 218 |
-
|
| 219 |
-
"
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
"
|
| 223 |
-
|
| 224 |
]
|
|
|
|
|
|
|
|
|
|
| 225 |
},
|
| 226 |
{
|
| 227 |
-
|
| 228 |
-
"
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
"source": [
|
| 234 |
-
"# model = EncoderDecoderModel.from_encoder_decoder_pretrained(\"xlm-roberta-base\", \"skt/kogpt2-base-v2\")"
|
| 235 |
]
|
|
|
|
|
|
|
|
|
|
| 236 |
},
|
| 237 |
{
|
| 238 |
-
|
| 239 |
-
"
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
"source": [
|
| 245 |
-
"trainer.train()\n",
|
| 246 |
-
"\n",
|
| 247 |
-
"model.save_pretrained(\"dump/best_model\")\n",
|
| 248 |
-
"src_tokenizer.save_pretrained(\"dump/best_model/src_tokenizer\")\n",
|
| 249 |
-
"trg_tokenizer.save_pretrained(\"dump/best_model/trg_tokenizer\")"
|
| 250 |
]
|
|
|
|
|
|
|
|
|
|
| 251 |
}
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
"
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
"
|
| 259 |
-
"
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
"
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
},
|
| 268 |
-
"
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
},
|
| 276 |
-
"
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"attachments": {},
|
| 5 |
+
"cell_type": "markdown",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"The primary codes below are based on [akpe12/JP-KR-ocr-translator-for-travel](https://github.com/akpe12/JP-KR-ocr-translator-for-travel)."
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "markdown",
|
| 13 |
+
"metadata": {
|
| 14 |
+
"id": "TrHlPFqwFAgj"
|
| 15 |
+
},
|
| 16 |
+
"source": [
|
| 17 |
+
"## Import"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "code",
|
| 22 |
+
"execution_count": 1,
|
| 23 |
+
"metadata": {
|
| 24 |
+
"id": "t-jXeSJKE1WM"
|
| 25 |
+
},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"from typing import Dict, List\n",
|
| 29 |
+
"import csv\n",
|
| 30 |
+
"\n",
|
| 31 |
+
"import datasets\n",
|
| 32 |
+
"import torch\n",
|
| 33 |
+
"from transformers import (\n",
|
| 34 |
+
" PreTrainedTokenizerFast,\n",
|
| 35 |
+
" DataCollatorForSeq2Seq,\n",
|
| 36 |
+
" Seq2SeqTrainingArguments,\n",
|
| 37 |
+
" BertJapaneseTokenizer,\n",
|
| 38 |
+
" Trainer\n",
|
| 39 |
+
")\n",
|
| 40 |
+
"from transformers.models.encoder_decoder.modeling_encoder_decoder import EncoderDecoderModel\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"from datasets import load_dataset\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"# encoder_model_name = \"xlm-roberta-base\"\n",
|
| 45 |
+
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
| 46 |
+
"decoder_model_name = \"skt/kogpt2-base-v2\""
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": 2,
|
| 52 |
+
"metadata": {
|
| 53 |
+
"id": "nEW5trBtbykK"
|
| 54 |
+
},
|
| 55 |
+
"outputs": [
|
| 56 |
{
|
| 57 |
+
"data": {
|
| 58 |
+
"text/plain": [
|
| 59 |
+
"(device(type='cpu'), 0)"
|
|
|
|
|
|
|
| 60 |
]
|
| 61 |
+
},
|
| 62 |
+
"execution_count": 2,
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"output_type": "execute_result"
|
| 65 |
+
}
|
| 66 |
+
],
|
| 67 |
+
"source": [
|
| 68 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 69 |
+
"# device = torch.device(\"cpu\")\n",
|
| 70 |
+
"device, torch.cuda.device_count()"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": 3,
|
| 76 |
+
"metadata": {
|
| 77 |
+
"id": "5ic7pUUBFU_v"
|
| 78 |
+
},
|
| 79 |
+
"outputs": [],
|
| 80 |
+
"source": [
|
| 81 |
+
"class GPT2Tokenizer(PreTrainedTokenizerFast):\n",
|
| 82 |
+
" def build_inputs_with_special_tokens(self, token_ids: List[int]) -> List[int]:\n",
|
| 83 |
+
" return token_ids + [self.eos_token_id] \n",
|
| 84 |
+
"\n",
|
| 85 |
+
"src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)\n",
|
| 86 |
+
"trg_tokenizer = GPT2Tokenizer.from_pretrained(decoder_model_name, bos_token='</s>', eos_token='</s>', unk_token='<unk>',\n",
|
| 87 |
+
" pad_token='<pad>', mask_token='<mask>')"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "markdown",
|
| 92 |
+
"metadata": {
|
| 93 |
+
"id": "DTf4U1fmFQFh"
|
| 94 |
+
},
|
| 95 |
+
"source": [
|
| 96 |
+
"## Data"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "code",
|
| 101 |
+
"execution_count": 4,
|
| 102 |
+
"metadata": {
|
| 103 |
+
"collapsed": false
|
| 104 |
+
},
|
| 105 |
+
"outputs": [],
|
| 106 |
+
"source": [
|
| 107 |
+
"dataset = load_dataset(\"sappho192/Tatoeba-Challenge-jpn-kor\")\n",
|
| 108 |
+
"# dataset = load_dataset(\"D:\\\\REPO\\\\Tatoeba-Challenge-jpn-kor\")\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"train_dataset = dataset['train']\n",
|
| 111 |
+
"test_dataset = dataset['test']\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"train_first_row = train_dataset[0]\n",
|
| 114 |
+
"test_first_row = test_dataset[0]"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": 5,
|
| 120 |
+
"metadata": {
|
| 121 |
+
"id": "65L4O1c5FLKt"
|
| 122 |
+
},
|
| 123 |
+
"outputs": [],
|
| 124 |
+
"source": [
|
| 125 |
+
"class PairedDataset:\n",
|
| 126 |
+
" def __init__(self, \n",
|
| 127 |
+
" source_tokenizer: PreTrainedTokenizerFast, target_tokenizer: PreTrainedTokenizerFast,\n",
|
| 128 |
+
" file_path: str = None,\n",
|
| 129 |
+
" dataset_raw: datasets.Dataset = None\n",
|
| 130 |
+
" ):\n",
|
| 131 |
+
" self.src_tokenizer = source_tokenizer\n",
|
| 132 |
+
" self.trg_tokenizer = target_tokenizer\n",
|
| 133 |
+
" \n",
|
| 134 |
+
" if file_path is not None:\n",
|
| 135 |
+
" with open(file_path, 'r') as fd:\n",
|
| 136 |
+
" reader = csv.reader(fd)\n",
|
| 137 |
+
" next(reader)\n",
|
| 138 |
+
" self.data = [row for row in reader]\n",
|
| 139 |
+
" elif dataset_raw is not None:\n",
|
| 140 |
+
" self.data = dataset_raw\n",
|
| 141 |
+
" else:\n",
|
| 142 |
+
" raise ValueError('file_path or dataset_raw must be specified')\n",
|
| 143 |
+
"\n",
|
| 144 |
+
" def __getitem__(self, index: int) -> Dict[str, torch.Tensor]:\n",
|
| 145 |
+
"# with open('train_log.txt', 'a+') as log_file:\n",
|
| 146 |
+
"# log_file.write(f'reading data[{index}] {self.data[index]}\\n')\n",
|
| 147 |
+
" if isinstance(self.data, datasets.Dataset):\n",
|
| 148 |
+
" src, trg = self.data[index]['sourceString'], self.data[index]['targetString']\n",
|
| 149 |
+
" else:\n",
|
| 150 |
+
" src, trg = self.data[index]\n",
|
| 151 |
+
" embeddings = self.src_tokenizer(src, return_attention_mask=False, return_token_type_ids=False)\n",
|
| 152 |
+
" embeddings['labels'] = self.trg_tokenizer.build_inputs_with_special_tokens(self.trg_tokenizer(trg, return_attention_mask=False)['input_ids'])\n",
|
| 153 |
+
"\n",
|
| 154 |
+
" return embeddings\n",
|
| 155 |
+
"\n",
|
| 156 |
+
" def __len__(self):\n",
|
| 157 |
+
" return len(self.data)"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": 6,
|
| 163 |
+
"metadata": {
|
| 164 |
+
"collapsed": false
|
| 165 |
+
},
|
| 166 |
+
"outputs": [],
|
| 167 |
+
"source": [
|
| 168 |
+
"DATA_ROOT = './output'\n",
|
| 169 |
+
"FILE_FFAC_FULL = 'ffac_full.csv'\n",
|
| 170 |
+
"FILE_FFAC_TEST = 'ffac_test.csv'\n",
|
| 171 |
+
"FILE_JA_KO_TRAIN = 'ja_ko_train.csv'\n",
|
| 172 |
+
"FILE_JA_KO_TEST = 'ja_ko_test.csv'\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"# train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_FFAC_FULL}')\n",
|
| 175 |
+
"# eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_FFAC_TEST}') \n",
|
| 176 |
+
"\n",
|
| 177 |
+
"# train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_JA_KO_TRAIN}')\n",
|
| 178 |
+
"# eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, file_path=f'{DATA_ROOT}/{FILE_JA_KO_TEST}')"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": 7,
|
| 184 |
+
"metadata": {
|
| 185 |
+
"collapsed": false
|
| 186 |
+
},
|
| 187 |
+
"outputs": [
|
| 188 |
{
|
| 189 |
+
"data": {
|
| 190 |
+
"text/plain": [
|
| 191 |
+
"{'input_ids': [2, 33, 2181, 1402, 893, 15200, 893, 13507, 881, 933, 882, 829, 3], 'labels': [9085, 10936, 10993, 23363, 9134, 18368, 8006, 389, 1]}"
|
|
|
|
|
|
|
|
|
|
| 192 |
]
|
| 193 |
+
},
|
| 194 |
+
"execution_count": 7,
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"output_type": "execute_result"
|
| 197 |
+
}
|
| 198 |
+
],
|
| 199 |
+
"source": [
|
| 200 |
+
"train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, dataset_raw=train_dataset)\n",
|
| 201 |
+
"eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, dataset_raw=test_dataset)\n",
|
| 202 |
+
"eval_dataset[0]"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "code",
|
| 207 |
+
"execution_count": 8,
|
| 208 |
+
"metadata": {},
|
| 209 |
+
"outputs": [],
|
| 210 |
+
"source": [
|
| 211 |
+
"# be sure to check the column count of each dataset if you encounter \"ValueError: too many values to unpack (expected 2)\"\n",
|
| 212 |
+
"# at the `src, trg = self.data[index]`\n",
|
| 213 |
+
"# The `cat ffac_full.csv tteb_train.csv > ja_ko_train.csv` command may be the reason.\n",
|
| 214 |
+
"# the last row of first csv and first row of second csv is merged and that's why 3rd column is created (which arouse ValueError)\n",
|
| 215 |
+
"# debug_data = train_dataset.data\n"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"cell_type": "markdown",
|
| 220 |
+
"metadata": {
|
| 221 |
+
"id": "uCBiLouSFiZY"
|
| 222 |
+
},
|
| 223 |
+
"source": [
|
| 224 |
+
"## Model"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"execution_count": 9,
|
| 230 |
+
"metadata": {
|
| 231 |
+
"id": "I7uFbFYJFje8"
|
| 232 |
+
},
|
| 233 |
+
"outputs": [
|
| 234 |
{
|
| 235 |
+
"name": "stderr",
|
| 236 |
+
"output_type": "stream",
|
| 237 |
+
"text": [
|
| 238 |
+
"Some weights of GPT2LMHeadModel were not initialized from the model checkpoint at skt/kogpt2-base-v2 and are newly initialized: ['transformer.h.0.crossattention.c_attn.bias', 'transformer.h.0.crossattention.c_attn.weight', 'transformer.h.0.crossattention.c_proj.bias', 'transformer.h.0.crossattention.c_proj.weight', 'transformer.h.0.crossattention.q_attn.bias', 'transformer.h.0.crossattention.q_attn.weight', 'transformer.h.0.ln_cross_attn.bias', 'transformer.h.0.ln_cross_attn.weight', 'transformer.h.1.crossattention.c_attn.bias', 'transformer.h.1.crossattention.c_attn.weight', 'transformer.h.1.crossattention.c_proj.bias', 'transformer.h.1.crossattention.c_proj.weight', 'transformer.h.1.crossattention.q_attn.bias', 'transformer.h.1.crossattention.q_attn.weight', 'transformer.h.1.ln_cross_attn.bias', 'transformer.h.1.ln_cross_attn.weight', 'transformer.h.10.crossattention.c_attn.bias', 'transformer.h.10.crossattention.c_attn.weight', 'transformer.h.10.crossattention.c_proj.bias', 'transformer.h.10.crossattention.c_proj.weight', 'transformer.h.10.crossattention.q_attn.bias', 'transformer.h.10.crossattention.q_attn.weight', 'transformer.h.10.ln_cross_attn.bias', 'transformer.h.10.ln_cross_attn.weight', 'transformer.h.11.crossattention.c_attn.bias', 'transformer.h.11.crossattention.c_attn.weight', 'transformer.h.11.crossattention.c_proj.bias', 'transformer.h.11.crossattention.c_proj.weight', 'transformer.h.11.crossattention.q_attn.bias', 'transformer.h.11.crossattention.q_attn.weight', 'transformer.h.11.ln_cross_attn.bias', 'transformer.h.11.ln_cross_attn.weight', 'transformer.h.2.crossattention.c_attn.bias', 'transformer.h.2.crossattention.c_attn.weight', 'transformer.h.2.crossattention.c_proj.bias', 'transformer.h.2.crossattention.c_proj.weight', 'transformer.h.2.crossattention.q_attn.bias', 'transformer.h.2.crossattention.q_attn.weight', 'transformer.h.2.ln_cross_attn.bias', 'transformer.h.2.ln_cross_attn.weight', 'transformer.h.3.crossattention.c_attn.bias', 'transformer.h.3.crossattention.c_attn.weight', 'transformer.h.3.crossattention.c_proj.bias', 'transformer.h.3.crossattention.c_proj.weight', 'transformer.h.3.crossattention.q_attn.bias', 'transformer.h.3.crossattention.q_attn.weight', 'transformer.h.3.ln_cross_attn.bias', 'transformer.h.3.ln_cross_attn.weight', 'transformer.h.4.crossattention.c_attn.bias', 'transformer.h.4.crossattention.c_attn.weight', 'transformer.h.4.crossattention.c_proj.bias', 'transformer.h.4.crossattention.c_proj.weight', 'transformer.h.4.crossattention.q_attn.bias', 'transformer.h.4.crossattention.q_attn.weight', 'transformer.h.4.ln_cross_attn.bias', 'transformer.h.4.ln_cross_attn.weight', 'transformer.h.5.crossattention.c_attn.bias', 'transformer.h.5.crossattention.c_attn.weight', 'transformer.h.5.crossattention.c_proj.bias', 'transformer.h.5.crossattention.c_proj.weight', 'transformer.h.5.crossattention.q_attn.bias', 'transformer.h.5.crossattention.q_attn.weight', 'transformer.h.5.ln_cross_attn.bias', 'transformer.h.5.ln_cross_attn.weight', 'transformer.h.6.crossattention.c_attn.bias', 'transformer.h.6.crossattention.c_attn.weight', 'transformer.h.6.crossattention.c_proj.bias', 'transformer.h.6.crossattention.c_proj.weight', 'transformer.h.6.crossattention.q_attn.bias', 'transformer.h.6.crossattention.q_attn.weight', 'transformer.h.6.ln_cross_attn.bias', 'transformer.h.6.ln_cross_attn.weight', 'transformer.h.7.crossattention.c_attn.bias', 'transformer.h.7.crossattention.c_attn.weight', 'transformer.h.7.crossattention.c_proj.bias', 'transformer.h.7.crossattention.c_proj.weight', 'transformer.h.7.crossattention.q_attn.bias', 'transformer.h.7.crossattention.q_attn.weight', 'transformer.h.7.ln_cross_attn.bias', 'transformer.h.7.ln_cross_attn.weight', 'transformer.h.8.crossattention.c_attn.bias', 'transformer.h.8.crossattention.c_attn.weight', 'transformer.h.8.crossattention.c_proj.bias', 'transformer.h.8.crossattention.c_proj.weight', 'transformer.h.8.crossattention.q_attn.bias', 'transformer.h.8.crossattention.q_attn.weight', 'transformer.h.8.ln_cross_attn.bias', 'transformer.h.8.ln_cross_attn.weight', 'transformer.h.9.crossattention.c_attn.bias', 'transformer.h.9.crossattention.c_attn.weight', 'transformer.h.9.crossattention.c_proj.bias', 'transformer.h.9.crossattention.c_proj.weight', 'transformer.h.9.crossattention.q_attn.bias', 'transformer.h.9.crossattention.q_attn.weight', 'transformer.h.9.ln_cross_attn.bias', 'transformer.h.9.ln_cross_attn.weight']\n",
|
| 239 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 240 |
+
]
|
| 241 |
+
}
|
| 242 |
+
],
|
| 243 |
+
"source": [
|
| 244 |
+
"model = EncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
| 245 |
+
" encoder_model_name,\n",
|
| 246 |
+
" decoder_model_name,\n",
|
| 247 |
+
" pad_token_id=trg_tokenizer.bos_token_id,\n",
|
| 248 |
+
")\n",
|
| 249 |
+
"model.config.decoder_start_token_id = trg_tokenizer.bos_token_id"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "code",
|
| 254 |
+
"execution_count": 11,
|
| 255 |
+
"metadata": {
|
| 256 |
+
"id": "YFq2GyOAUV0W"
|
| 257 |
+
},
|
| 258 |
+
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
{
|
| 260 |
+
"data": {
|
| 261 |
+
"text/html": [
|
| 262 |
+
"Finishing last run (ID:1vwqqxps) before initializing another..."
|
| 263 |
+
],
|
| 264 |
+
"text/plain": [
|
| 265 |
+
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
]
|
| 267 |
+
},
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"output_type": "display_data"
|
| 270 |
},
|
| 271 |
{
|
| 272 |
+
"data": {
|
| 273 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 274 |
+
"model_id": "a82aa19a250b43f28d7ecc72eeebc88d",
|
| 275 |
+
"version_major": 2,
|
| 276 |
+
"version_minor": 0
|
| 277 |
},
|
| 278 |
+
"text/plain": [
|
| 279 |
+
"VBox(children=(Label(value='0.001 MB of 0.010 MB uploaded\\r'), FloatProgress(value=0.10972568578553615, max=1.…"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
]
|
| 281 |
+
},
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"output_type": "display_data"
|
| 284 |
},
|
| 285 |
{
|
| 286 |
+
"data": {
|
| 287 |
+
"text/html": [
|
| 288 |
+
" View run <strong style=\"color:#cdcd00\">jbert+kogpt2</strong> at: <a href='https://wandb.ai/sappho192/fftr-poc1/runs/1vwqqxps' target=\"_blank\">https://wandb.ai/sappho192/fftr-poc1/runs/1vwqqxps</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
|
| 289 |
+
],
|
| 290 |
+
"text/plain": [
|
| 291 |
+
"<IPython.core.display.HTML object>"
|
| 292 |
]
|
| 293 |
+
},
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"output_type": "display_data"
|
| 296 |
},
|
| 297 |
{
|
| 298 |
+
"data": {
|
| 299 |
+
"text/html": [
|
| 300 |
+
"Find logs at: <code>.\\wandb\\run-20240131_135356-1vwqqxps\\logs</code>"
|
| 301 |
+
],
|
| 302 |
+
"text/plain": [
|
| 303 |
+
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
]
|
| 305 |
+
},
|
| 306 |
+
"metadata": {},
|
| 307 |
+
"output_type": "display_data"
|
| 308 |
},
|
| 309 |
{
|
| 310 |
+
"data": {
|
| 311 |
+
"text/html": [
|
| 312 |
+
"Successfully finished last run (ID:1vwqqxps). Initializing new run:<br/>"
|
| 313 |
+
],
|
| 314 |
+
"text/plain": [
|
| 315 |
+
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
]
|
| 317 |
+
},
|
| 318 |
+
"metadata": {},
|
| 319 |
+
"output_type": "display_data"
|
| 320 |
},
|
| 321 |
{
|
| 322 |
+
"data": {
|
| 323 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 324 |
+
"model_id": "c2cd7f6fb5b1428b98b80a3cc82ec303",
|
| 325 |
+
"version_major": 2,
|
| 326 |
+
"version_minor": 0
|
| 327 |
},
|
| 328 |
+
"text/plain": [
|
| 329 |
+
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011288888888884685, max=1.0…"
|
| 330 |
]
|
| 331 |
+
},
|
| 332 |
+
"metadata": {},
|
| 333 |
+
"output_type": "display_data"
|
| 334 |
},
|
| 335 |
{
|
| 336 |
+
"data": {
|
| 337 |
+
"text/html": [
|
| 338 |
+
"Tracking run with wandb version 0.16.2"
|
| 339 |
+
],
|
| 340 |
+
"text/plain": [
|
| 341 |
+
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
]
|
| 343 |
+
},
|
| 344 |
+
"metadata": {},
|
| 345 |
+
"output_type": "display_data"
|
| 346 |
},
|
| 347 |
{
|
| 348 |
+
"data": {
|
| 349 |
+
"text/html": [
|
| 350 |
+
"Run data is saved locally in <code>d:\\REPO\\ffxiv-ja-ko-translator\\wandb\\run-20240131_135421-etxsdxw2</code>"
|
| 351 |
+
],
|
| 352 |
+
"text/plain": [
|
| 353 |
+
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
]
|
| 355 |
+
},
|
| 356 |
+
"metadata": {},
|
| 357 |
+
"output_type": "display_data"
|
| 358 |
},
|
| 359 |
{
|
| 360 |
+
"data": {
|
| 361 |
+
"text/html": [
|
| 362 |
+
"Syncing run <strong><a href='https://wandb.ai/sappho192/fftr-poc1/runs/etxsdxw2' target=\"_blank\">jbert+kogpt2</a></strong> to <a href='https://wandb.ai/sappho192/fftr-poc1' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
| 363 |
+
],
|
| 364 |
+
"text/plain": [
|
| 365 |
+
"<IPython.core.display.HTML object>"
|
| 366 |
]
|
| 367 |
+
},
|
| 368 |
+
"metadata": {},
|
| 369 |
+
"output_type": "display_data"
|
| 370 |
},
|
| 371 |
{
|
| 372 |
+
"data": {
|
| 373 |
+
"text/html": [
|
| 374 |
+
" View project at <a href='https://wandb.ai/sappho192/fftr-poc1' target=\"_blank\">https://wandb.ai/sappho192/fftr-poc1</a>"
|
| 375 |
+
],
|
| 376 |
+
"text/plain": [
|
| 377 |
+
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
| 378 |
]
|
| 379 |
+
},
|
| 380 |
+
"metadata": {},
|
| 381 |
+
"output_type": "display_data"
|
| 382 |
},
|
| 383 |
{
|
| 384 |
+
"data": {
|
| 385 |
+
"text/html": [
|
| 386 |
+
" View run at <a href='https://wandb.ai/sappho192/fftr-poc1/runs/etxsdxw2' target=\"_blank\">https://wandb.ai/sappho192/fftr-poc1/runs/etxsdxw2</a>"
|
| 387 |
+
],
|
| 388 |
+
"text/plain": [
|
| 389 |
+
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
]
|
| 391 |
+
},
|
| 392 |
+
"metadata": {},
|
| 393 |
+
"output_type": "display_data"
|
| 394 |
}
|
| 395 |
+
],
|
| 396 |
+
"source": [
|
| 397 |
+
"# for Trainer\n",
|
| 398 |
+
"import wandb\n",
|
| 399 |
+
"\n",
|
| 400 |
+
"collate_fn = DataCollatorForSeq2Seq(src_tokenizer, model)\n",
|
| 401 |
+
"wandb.init(project=\"fftr-poc1\", name='jbert+kogpt2')\n",
|
| 402 |
+
"\n",
|
| 403 |
+
"arguments = Seq2SeqTrainingArguments(\n",
|
| 404 |
+
" output_dir='dump',\n",
|
| 405 |
+
" do_train=True,\n",
|
| 406 |
+
" do_eval=True,\n",
|
| 407 |
+
" evaluation_strategy=\"epoch\",\n",
|
| 408 |
+
" save_strategy=\"epoch\",\n",
|
| 409 |
+
" num_train_epochs=3,\n",
|
| 410 |
+
" # num_train_epochs=25,\n",
|
| 411 |
+
" per_device_train_batch_size=1,\n",
|
| 412 |
+
" # per_device_train_batch_size=30, # takes 40GB\n",
|
| 413 |
+
" # per_device_train_batch_size=64,\n",
|
| 414 |
+
" per_device_eval_batch_size=1,\n",
|
| 415 |
+
" # per_device_eval_batch_size=30,\n",
|
| 416 |
+
" # per_device_eval_batch_size=64,\n",
|
| 417 |
+
" warmup_ratio=0.1,\n",
|
| 418 |
+
" gradient_accumulation_steps=4,\n",
|
| 419 |
+
" save_total_limit=5,\n",
|
| 420 |
+
" dataloader_num_workers=1,\n",
|
| 421 |
+
" # fp16=True, # ENABLE if CUDA is enabled\n",
|
| 422 |
+
" load_best_model_at_end=True,\n",
|
| 423 |
+
" report_to='wandb'\n",
|
| 424 |
+
")\n",
|
| 425 |
+
"\n",
|
| 426 |
+
"trainer = Trainer(\n",
|
| 427 |
+
" model,\n",
|
| 428 |
+
" arguments,\n",
|
| 429 |
+
" data_collator=collate_fn,\n",
|
| 430 |
+
" train_dataset=train_dataset,\n",
|
| 431 |
+
" eval_dataset=eval_dataset\n",
|
| 432 |
+
")"
|
| 433 |
+
]
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"cell_type": "markdown",
|
| 437 |
+
"metadata": {
|
| 438 |
+
"id": "pPsjDHO5Vc3y"
|
| 439 |
+
},
|
| 440 |
+
"source": [
|
| 441 |
+
"## Training"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"cell_type": "code",
|
| 446 |
+
"execution_count": null,
|
| 447 |
+
"metadata": {
|
| 448 |
+
"id": "_T4P4XunmK-C"
|
| 449 |
+
},
|
| 450 |
+
"outputs": [],
|
| 451 |
+
"source": [
|
| 452 |
+
"# model = EncoderDecoderModel.from_encoder_decoder_pretrained(\"xlm-roberta-base\", \"skt/kogpt2-base-v2\")"
|
| 453 |
+
]
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"cell_type": "code",
|
| 457 |
+
"execution_count": 12,
|
| 458 |
+
"metadata": {
|
| 459 |
+
"id": "7vTqAgW6Ve3J"
|
| 460 |
+
},
|
| 461 |
+
"outputs": [
|
| 462 |
+
{
|
| 463 |
+
"data": {
|
| 464 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 465 |
+
"model_id": "0afe460e9f614d9a90379cf99fcf8af3",
|
| 466 |
+
"version_major": 2,
|
| 467 |
+
"version_minor": 0
|
| 468 |
},
|
| 469 |
+
"text/plain": [
|
| 470 |
+
" 0%| | 0/9671328 [00:00<?, ?it/s]"
|
| 471 |
+
]
|
| 472 |
+
},
|
| 473 |
+
"metadata": {},
|
| 474 |
+
"output_type": "display_data"
|
| 475 |
}
|
| 476 |
+
],
|
| 477 |
+
"source": [
|
| 478 |
+
"trainer.train()\n",
|
| 479 |
+
"\n",
|
| 480 |
+
"model.save_pretrained(\"dump/best_model\")\n",
|
| 481 |
+
"src_tokenizer.save_pretrained(\"dump/best_model/src_tokenizer\")\n",
|
| 482 |
+
"trg_tokenizer.save_pretrained(\"dump/best_model/trg_tokenizer\")"
|
| 483 |
+
]
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"cell_type": "code",
|
| 487 |
+
"execution_count": 2,
|
| 488 |
+
"metadata": {},
|
| 489 |
+
"outputs": [],
|
| 490 |
+
"source": [
|
| 491 |
+
"# import wandb\n",
|
| 492 |
+
"# wandb.finish()"
|
| 493 |
+
]
|
| 494 |
+
}
|
| 495 |
+
],
|
| 496 |
+
"metadata": {
|
| 497 |
+
"colab": {
|
| 498 |
+
"machine_shape": "hm",
|
| 499 |
+
"provenance": []
|
| 500 |
+
},
|
| 501 |
+
"gpuClass": "premium",
|
| 502 |
+
"kernelspec": {
|
| 503 |
+
"display_name": "Python 3 (ipykernel)",
|
| 504 |
+
"language": "python",
|
| 505 |
+
"name": "python3"
|
| 506 |
},
|
| 507 |
+
"language_info": {
|
| 508 |
+
"codemirror_mode": {
|
| 509 |
+
"name": "ipython",
|
| 510 |
+
"version": 3
|
| 511 |
+
},
|
| 512 |
+
"file_extension": ".py",
|
| 513 |
+
"mimetype": "text/x-python",
|
| 514 |
+
"name": "python",
|
| 515 |
+
"nbconvert_exporter": "python",
|
| 516 |
+
"pygments_lexer": "ipython3",
|
| 517 |
+
"version": "3.10.13"
|
| 518 |
+
}
|
| 519 |
+
},
|
| 520 |
+
"nbformat": 4,
|
| 521 |
+
"nbformat_minor": 0
|
| 522 |
}
|