Committed model architecture file so that you can refer to this file for creating a model in code. For more reference please look at the inference documents for more details
43e9ef6
verified
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| from dataclasses import dataclass | |
| class LayerNorm(nn.Module): | |
| def __init__(self, ndim, bias): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(ndim)) | |
| self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | |
| def forward(self, x): | |
| return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
| self.attn_dropout = nn.Dropout(config.dropout) | |
| self.resid_dropout = nn.Dropout(config.dropout) | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.flash = hasattr(F, 'scaled_dot_product_attention') | |
| if not self.flash: | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) | |
| .view(1, 1, config.block_size, config.block_size)) | |
| def forward(self, x): | |
| B, T, C = x.size() | |
| q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| if self.flash: | |
| y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True) | |
| else: | |
| att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
| att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
| att = F.softmax(att, dim=-1) | |
| att = self.attn_dropout(att) | |
| y = att @ v | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) | |
| y = self.resid_dropout(self.c_proj(y)) | |
| return y | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | |
| self.gelu = nn.GELU() | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | |
| self.dropout = nn.Dropout(config.dropout) | |
| def forward(self, x): | |
| return self.dropout(self.c_proj(self.gelu(self.c_fc(x)))) | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln1 = LayerNorm(config.n_embd, config.bias) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln2 = LayerNorm(config.n_embd, config.bias) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| x = x + self.attn(self.ln1(x)) | |
| x = x + self.mlp(self.ln2(x)) | |
| return x | |
| class GPTConfig: | |
| block_size: int = 256 | |
| vocab_size: int = 50000 | |
| n_layer: int = 24 | |
| n_head: int = 12 | |
| n_embd: int = 768 | |
| dropout: float = 0.1 | |
| bias: bool = True | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| wte=nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe=nn.Embedding(config.block_size, config.n_embd), | |
| drop=nn.Dropout(config.dropout), | |
| h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f=LayerNorm(config.n_embd, config.bias), | |
| )) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.transformer.wte.weight = self.lm_head.weight | |
| self.apply(self._init_weights) | |
| for pn, p in self.named_parameters(): | |
| if pn.endswith('c_proj.weight'): | |
| nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| if module.bias is not None: | |
| nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| def forward(self, idx, targets=None): | |
| device = idx.device | |
| b, t = idx.size() | |
| assert t <= self.config.block_size | |
| pos = torch.arange(0, t, dtype=torch.long, device=device) | |
| tok_emb = self.transformer.wte(idx) | |
| pos_emb = self.transformer.wpe(pos) | |
| x = self.transformer.drop(tok_emb + pos_emb) | |
| for block in self.transformer.h: | |
| x = block(x) | |
| x = self.transformer.ln_f(x) | |
| if targets is not None: | |
| logits = self.lm_head(x) | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
| return logits, loss | |
| else: | |
| logits = self.lm_head(x[:, [-1], :]) | |
| return logits, None | |
| def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): | |
| for _ in range(max_new_tokens): | |
| idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] | |
| logits, _ = self(idx_cond) | |
| logits = logits[:, -1, :] / temperature | |
| if top_k is not None: | |
| v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
| logits[logits < v[:, [-1]]] = -float('Inf') | |
| probs = F.softmax(logits, dim=-1) | |
| idx_next = torch.multinomial(probs, num_samples=1) | |
| idx = torch.cat((idx, idx_next), dim=1) | |
| return idx | |