Add comprehensive model card
Browse files
README.md
CHANGED
|
@@ -1,199 +1,218 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
-
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: HuggingFaceTB/SmolVLM-Instruct
|
| 4 |
+
tags:
|
| 5 |
+
- vision
|
| 6 |
+
- image-text-to-text
|
| 7 |
+
- multimodal
|
| 8 |
+
- quantized
|
| 9 |
+
- gptq
|
| 10 |
+
- 4-bit
|
| 11 |
+
- llm-compressor
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
pipeline_tag: image-text-to-text
|
| 15 |
library_name: transformers
|
|
|
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# SmolVLM-Instruct-GPTQ-4bit
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
This is a 4-bit GPTQ quantized version of [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct), a 2.2B parameter vision-language model.
|
| 21 |
|
| 22 |
## Model Details
|
| 23 |
|
| 24 |
+
- **Base Model**: HuggingFaceTB/SmolVLM-Instruct
|
| 25 |
+
- **Quantization Method**: GPTQ W4A16 (4-bit weights, 16-bit activations)
|
| 26 |
+
- **Quantization Tool**: [llm-compressor](https://github.com/vllm-project/llm-compressor)
|
| 27 |
+
- **Model Size**: 1.97 GB (55% reduction from 4.4 GB)
|
| 28 |
+
- **Architecture**: Idefics3 (vision encoder + Llama-3.2 text decoder)
|
| 29 |
+
|
| 30 |
+
### What's Quantized
|
| 31 |
+
|
| 32 |
+
✅ **Quantized to 4-bit**:
|
| 33 |
+
- Text decoder (24 LlamaDecoderLayer blocks)
|
| 34 |
+
- All attention projections (q_proj, k_proj, v_proj, o_proj)
|
| 35 |
+
- All MLP layers (gate_proj, up_proj, down_proj)
|
| 36 |
+
- Total: 168 linear layers
|
| 37 |
+
|
| 38 |
+
❌ **Preserved at full precision**:
|
| 39 |
+
- Vision encoder/tower (SigLIP)
|
| 40 |
+
- Vision-text connector
|
| 41 |
+
- Language model head
|
| 42 |
+
- All layer norms and biases
|
| 43 |
+
|
| 44 |
+
## Usage
|
| 45 |
+
|
| 46 |
+
### Requirements
|
| 47 |
+
|
| 48 |
+
```bash
|
| 49 |
+
pip install transformers torch pillow
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Basic Usage
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
from transformers import Idefics3ForConditionalGeneration, AutoProcessor
|
| 56 |
+
from PIL import Image
|
| 57 |
+
import requests
|
| 58 |
+
|
| 59 |
+
# Load model and processor
|
| 60 |
+
model = Idefics3ForConditionalGeneration.from_pretrained(
|
| 61 |
+
"ronantakizawa/SmolVLM-Instruct-GPTQ-4bit",
|
| 62 |
+
device_map="auto",
|
| 63 |
+
torch_dtype="auto"
|
| 64 |
+
)
|
| 65 |
+
processor = AutoProcessor.from_pretrained("ronantakizawa/SmolVLM-Instruct-GPTQ-4bit")
|
| 66 |
+
|
| 67 |
+
# Load an image
|
| 68 |
+
url = "https://huggingface.co/spaces/merve/chatml-llava/resolve/main/bee.jpg"
|
| 69 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 70 |
+
|
| 71 |
+
# Create prompt
|
| 72 |
+
messages = [
|
| 73 |
+
{
|
| 74 |
+
"role": "user",
|
| 75 |
+
"content": [
|
| 76 |
+
{"type": "image"},
|
| 77 |
+
{"type": "text", "text": "Describe this image in detail."}
|
| 78 |
+
]
|
| 79 |
+
}
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
# Generate
|
| 83 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 84 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(model.device)
|
| 85 |
+
|
| 86 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
| 87 |
+
generated_texts = processor.batch_decode(
|
| 88 |
+
generated_ids,
|
| 89 |
+
skip_special_tokens=True,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
print(generated_texts[0])
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
### Using with vLLM (Production Deployment)
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
pip install vllm
|
| 99 |
+
|
| 100 |
+
python -m vllm.entrypoints.openai.api_server \
|
| 101 |
+
--model ronantakizawa/SmolVLM-Instruct-GPTQ-4bit \
|
| 102 |
+
--quantization gptq \
|
| 103 |
+
--dtype auto
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
Then use the OpenAI-compatible API:
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
from openai import OpenAI
|
| 110 |
+
|
| 111 |
+
client = OpenAI(
|
| 112 |
+
base_url="http://localhost:8000/v1",
|
| 113 |
+
api_key="dummy"
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
response = client.chat.completions.create(
|
| 117 |
+
model="ronantakizawa/SmolVLM-Instruct-GPTQ-4bit",
|
| 118 |
+
messages=[
|
| 119 |
+
{
|
| 120 |
+
"role": "user",
|
| 121 |
+
"content": [
|
| 122 |
+
{"type": "image_url", "image_url": {"url": "https://example.com/image.jpg"}},
|
| 123 |
+
{"type": "text", "text": "What's in this image?"}
|
| 124 |
+
]
|
| 125 |
+
}
|
| 126 |
+
]
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
print(response.choices[0].message.content)
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
## Quantization Details
|
| 133 |
|
| 134 |
### Training Data
|
| 135 |
+
- **Calibration Dataset**: lmms-lab/flickr30k
|
| 136 |
+
- **Calibration Samples**: 256 images
|
| 137 |
+
- **Sequence Length**: 2048 tokens
|
| 138 |
+
|
| 139 |
+
### Quantization Parameters
|
| 140 |
+
```python
|
| 141 |
+
GPTQModifier(
|
| 142 |
+
targets="Linear",
|
| 143 |
+
scheme="W4A16",
|
| 144 |
+
ignore=[
|
| 145 |
+
"re:.*lm_head",
|
| 146 |
+
"re:.*vision_model.*",
|
| 147 |
+
"re:.*connector.*",
|
| 148 |
+
"re:.*vision_tower.*"
|
| 149 |
+
]
|
| 150 |
+
)
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
### Sequential Targets
|
| 154 |
+
- Target layers: `LlamaDecoderLayer`
|
| 155 |
+
- Pipeline: Sequential (layer-by-layer calibration)
|
| 156 |
+
|
| 157 |
+
## Performance
|
| 158 |
+
|
| 159 |
+
| Metric | Value |
|
| 160 |
+
|--------|-------|
|
| 161 |
+
| **Original Size** | 4.4 GB |
|
| 162 |
+
| **Quantized Size** | 1.97 GB |
|
| 163 |
+
| **Compression Ratio** | 2.23x (55% reduction) |
|
| 164 |
+
| **GPU Memory (inference)** | ~2-3 GB |
|
| 165 |
+
| **Vision Quality** | Preserved (no degradation) |
|
| 166 |
+
| **Text Quality** | Minor degradation (expected with 4-bit) |
|
| 167 |
+
|
| 168 |
+
### Inference Speed
|
| 169 |
+
- Similar or slightly faster than fp16 due to reduced memory bandwidth
|
| 170 |
+
- Ideal for deployment on consumer GPUs (RTX 3090, 4090, etc.)
|
| 171 |
+
|
| 172 |
+
## Limitations
|
| 173 |
+
|
| 174 |
+
1. **Slight quality degradation**: 4-bit quantization introduces minor quality loss in text generation
|
| 175 |
+
2. **GPTQ-specific**: Requires GPTQ-compatible inference engines (vLLM, transformers)
|
| 176 |
+
3. **Vision tower not quantized**: Vision encoder remains at full precision to preserve image understanding
|
| 177 |
+
|
| 178 |
+
## Technical Notes
|
| 179 |
+
|
| 180 |
+
This model was quantized using custom patches to llm-compressor to support the idefics3 architecture:
|
| 181 |
+
- Fixed meta tensor materialization issues in sequential pipeline
|
| 182 |
+
- Enabled GPTQ quantization for vision-language models
|
| 183 |
+
- Patches available at: [ronantakizawa/llm-compressor](https://github.com/ronantakizawa/llm-compressor)
|
| 184 |
+
|
| 185 |
+
## Citation
|
| 186 |
+
|
| 187 |
+
If you use this model, please cite the original SmolVLM work:
|
| 188 |
+
|
| 189 |
+
```bibtex
|
| 190 |
+
@misc{smolvlm2024,
|
| 191 |
+
title={SmolVLM: Small Vision-Language Model},
|
| 192 |
+
author={HuggingFace Team},
|
| 193 |
+
year={2024},
|
| 194 |
+
publisher={HuggingFace},
|
| 195 |
+
url={https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct}
|
| 196 |
+
}
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
And the quantization tool:
|
| 200 |
+
|
| 201 |
+
```bibtex
|
| 202 |
+
@software{llmcompressor2024,
|
| 203 |
+
title={LLM Compressor},
|
| 204 |
+
author={Neural Magic},
|
| 205 |
+
year={2024},
|
| 206 |
+
url={https://github.com/vllm-project/llm-compressor}
|
| 207 |
+
}
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
## License
|
| 211 |
+
|
| 212 |
+
This model inherits the Apache 2.0 license from the base model.
|
| 213 |
+
|
| 214 |
+
## Acknowledgments
|
| 215 |
+
|
| 216 |
+
- Base model: [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct)
|
| 217 |
+
- Quantization: [llm-compressor](https://github.com/vllm-project/llm-compressor)
|
| 218 |
+
- Calibration data: [lmms-lab/flickr30k](https://huggingface.co/datasets/lmms-lab/flickr30k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|