Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,26 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
```py
|
| 5 |
Classification Report:
|
| 6 |
precision recall f1-score support
|
|
@@ -15,3 +35,73 @@ weighted avg 0.9989 0.9989 0.9989 9999
|
|
| 15 |
```
|
| 16 |
|
| 17 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- prithivMLmods/AI-vs-Deepfake-vs-Real
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- google/siglip2-base-patch16-224
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- AI-vs-Deepfake-vs-Real
|
| 13 |
+
- '9999'
|
| 14 |
+
- Deepfake
|
| 15 |
---
|
| 16 |
+
|
| 17 |
+

|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# **AI-vs-Deepfake-vs-Real-9999**
|
| 21 |
+
|
| 22 |
+
> **AI-vs-Deepfake-vs-Real-9999** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to detect whether an image is AI-generated, a deepfake, or a real one using the **SiglipForImageClassification** architecture.
|
| 23 |
+
|
| 24 |
```py
|
| 25 |
Classification Report:
|
| 26 |
precision recall f1-score support
|
|
|
|
| 35 |
```
|
| 36 |
|
| 37 |

|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
The model categorizes images into three classes:
|
| 41 |
+
- **Class 0:** "Artificial"
|
| 42 |
+
- **Class 1:** "Deepfake"
|
| 43 |
+
- **Class 2:** "Real one"
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
# **Run with Transformers🤗**
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
!pip install -q transformers torch pillow gradio
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
import gradio as gr
|
| 55 |
+
from transformers import AutoImageProcessor
|
| 56 |
+
from transformers import SiglipForImageClassification
|
| 57 |
+
from transformers.image_utils import load_image
|
| 58 |
+
from PIL import Image
|
| 59 |
+
import torch
|
| 60 |
+
|
| 61 |
+
# Load model and processor
|
| 62 |
+
model_name = "prithivMLmods/AI-vs-Deepfake-vs-Real-9999"
|
| 63 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 64 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 65 |
+
|
| 66 |
+
def classify_image(image):
|
| 67 |
+
"""Predicts whether an image is Artificial, Deepfake, or Real."""
|
| 68 |
+
image = Image.fromarray(image).convert("RGB")
|
| 69 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 70 |
+
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
outputs = model(**inputs)
|
| 73 |
+
logits = outputs.logits
|
| 74 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 75 |
+
|
| 76 |
+
labels = {
|
| 77 |
+
"0": "Artificial", "1": "Deepfake", "2": "Real one"
|
| 78 |
+
}
|
| 79 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 80 |
+
|
| 81 |
+
return predictions
|
| 82 |
+
|
| 83 |
+
# Create Gradio interface
|
| 84 |
+
iface = gr.Interface(
|
| 85 |
+
fn=classify_image,
|
| 86 |
+
inputs=gr.Image(type="numpy"),
|
| 87 |
+
outputs=gr.Label(label="Prediction Scores"),
|
| 88 |
+
title="AI vs. Deepfake vs. Real Image Classification",
|
| 89 |
+
description="Upload an image to determine if it's AI-generated, a Deepfake, or a Real one."
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Launch the app
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
iface.launch()
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
---
|
| 98 |
+
|
| 99 |
+
# **Intended Use:**
|
| 100 |
+
|
| 101 |
+
The **AI-vs-Deepfake-vs-Real-9999** model is designed to classify images into three categories: AI-generated, deepfake, or real. Potential use cases include:
|
| 102 |
+
|
| 103 |
+
- **AI Content Detection:** Identifying AI-generated images from real ones.
|
| 104 |
+
- **Deepfake Detection:** Assisting cybersecurity experts and forensic teams in detecting synthetic media.
|
| 105 |
+
- **Media Verification:** Helping journalists and fact-checkers verify the authenticity of images.
|
| 106 |
+
- **AI Ethics & Research:** Contributing to studies on AI-generated content detection.
|
| 107 |
+
- **Social Media Moderation:** Enhancing tools to prevent misinformation and digital deception.
|