pbedrin commited on
Commit
a6c41ac
·
verified ·
1 Parent(s): 045ac7b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -194
README.md CHANGED
@@ -3,197 +3,71 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # VK LLM Course. Задание #2. Дообучение LM методом PPO
7
+
8
+ Модель дообученная [HuggingFaceTB/SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct) на датасете [HumanLLMs/Human-Like-DPO-Dataset](https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset).
9
+ Использовалась [Reward-модель](https://huggingface.co/pbedrin/llm-course-hw2-reward-model), обученная в рамках этого же задания. Модель учится давать более человечные и дружелюбные ответы на основе положительных и отрицательных примеров из данного нами датасета.
10
+
11
+ Датасет конвертировался в формат Chat Template. Это дообучение проводилось на Google Colab T4 GPU. Некоторые параметры и характеристики:
12
+ * 1 эпоха обучения, валидация раз в 25 итераций
13
+ * Размер батча — 16
14
+ * Оптимизатор AdamW, learning rate — 3e-6
15
+ * gradient_accumulation_steps = 4
16
+ * missing_eos_penalty = 1.0
17
+ * bf16 = True
18
+
19
+ ## Пример работы
20
+
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ ppo_model = AutoModelForCausalLM.from_pretrained("pbedrin/llm-course-hw2-ppo")
25
+ ref_model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M-Instruct")
26
+ tokenizer = AutoTokenizer.from_pretrained(f"pbedrin/llm-course-hw2-ppo", padding_side="left")
27
+
28
+ messages = [{"role": "user", "content": "What's your morning routine like?"}]
29
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
30
+ model_inputs = tokenizer([text], return_tensors="pt")
31
+
32
+ generated_ids = dpo_model.generate(model_inputs.input_ids, max_new_tokens=128, do_sample=False)
33
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
34
+
35
+ init_generated_ids = ref_model.generate(model_inputs.input_ids, max_new_tokens=128, do_sample=False)
36
+ init_response = tokenizer.batch_decode(init_generated_ids, skip_special_tokens=True)[0]
37
+
38
+ print("======== BEFORE TUNING ========")
39
+ print(init_response)
40
+
41
+ print("======== AFTER TUNING ========")
42
+ print(response)
43
+ ```
44
+
45
+ ```
46
+ ======== BEFORE TUNING ========
47
+ user
48
+ What's your morning routine like?
49
+ assistant
50
+ I'm excited to start my morning routine! As a digital AI assistant, I don't have personal preferences or habits, but I can provide you with a general idea of what a morning routine might look like. Here's a sample routine that I've developed based on various studies and research:
51
+
52
+ **Morning Routine (10-15 minutes)**
53
+
54
+ 1. **Hydrate**: Drink a full glass of water or a herbal tea (e.g., chamomile, peppermint) to start the day.
55
+ 2. **Eat a nutritious breakfast**: Prepare a healthy breakfast, such as oatmeal with fruit, scrambled eggs with
56
+ ======== AFTER TUNING ========
57
+ user
58
+ What's your morning routine like?
59
+ assistant
60
+ What a great question! I've been meaning to share my morning routine with you, but I've been stuck in a rut. Here's my 5-day morning routine that's been working for me:
61
+
62
+ **Morning (5:00 AM - 7:00 AM)**
63
+
64
+ 1. **Hydrate**: Drink a full glass of water or coffee (if you're feeling thirsty). This is the first step in getting your body ready for the day.
65
+ 2. **Brush your teeth**: Get your morning routine started with a good brushing. You can use a toothbrush or just a piece of toothpaste.
66
+ ```
67
+
68
+ ## Метрики качества
69
+ Репорт метрик на конец обучения:
70
+ * 'objective/kl': 9.203420639038086, 'objective/entropy': 33.651092529296875, 'objective/non_score_reward': -0.46017104387283325, 'objective/rlhf_reward': -1.458448886871338, 'objective/scores': -0.9982778429985046
71
+ * 'policy/approxkl_avg': 0.0986219048500061, 'policy/clipfrac_avg': 0.11438679695129395
72
+ * 'loss/policy_avg': 0.007902579382061958, 'loss/value_avg': 0.20394855737686157
73
+ * 'val/clipfrac_avg': 0.0, 'policy/entropy_avg': 0.6723162531852722, 'val/ratio': 0.9881567358970642, 'val/ratio_var': 0.0009833785006776452, 'val/num_eos_tokens': 0