Upload train_sft_demo.py with huggingface_hub
Browse files- train_sft_demo.py +32 -0
train_sft_demo.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = ["trl>=0.12.0", "peft>=0.7.0", "datasets", "transformers", "torch", "accelerate"]
|
| 3 |
+
# ///
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from peft import LoraConfig
|
| 7 |
+
from trl import SFTTrainer, SFTConfig
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Load a small dataset
|
| 11 |
+
dataset = load_dataset("trl-lib/Capybara", split="train[:500]")
|
| 12 |
+
|
| 13 |
+
# Setup trainer
|
| 14 |
+
trainer = SFTTrainer(
|
| 15 |
+
model="Qwen/Qwen2.5-0.5B",
|
| 16 |
+
train_dataset=dataset,
|
| 17 |
+
peft_config=LoraConfig(r=16, lora_alpha=32, target_modules="all-linear"),
|
| 18 |
+
args=SFTConfig(
|
| 19 |
+
output_dir="qwen-demo-sft",
|
| 20 |
+
max_steps=100,
|
| 21 |
+
per_device_train_batch_size=2,
|
| 22 |
+
gradient_accumulation_steps=4,
|
| 23 |
+
logging_steps=10,
|
| 24 |
+
push_to_hub=True,
|
| 25 |
+
hub_model_id="passagereptile455/qwen-demo-sft",
|
| 26 |
+
hub_private_repo=True,
|
| 27 |
+
)
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
trainer.train()
|
| 31 |
+
trainer.push_to_hub()
|
| 32 |
+
print("Training complete! Model pushed to Hub.")
|