new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

An Empirical Study on Developers Shared Conversations with ChatGPT in GitHub Pull Requests and Issues

ChatGPT has significantly impacted software development practices, providing substantial assistance to developers in a variety of tasks, including coding, testing, and debugging. Despite its widespread adoption, the impact of ChatGPT as an assistant in collaborative coding remains largely unexplored. In this paper, we analyze a dataset of 210 and 370 developers shared conversations with ChatGPT in GitHub pull requests (PRs) and issues. We manually examined the content of the conversations and characterized the dynamics of the sharing behavior, i.e., understanding the rationale behind the sharing, identifying the locations where the conversations were shared, and determining the roles of the developers who shared them. Our main observations are: (1) Developers seek ChatGPT assistance across 16 types of software engineering inquiries. In both conversations shared in PRs and issues, the most frequently encountered inquiry categories include code generation, conceptual questions, how-to guides, issue resolution, and code review. (2) Developers frequently engage with ChatGPT via multi-turn conversations where each prompt can fulfill various roles, such as unveiling initial or new tasks, iterative follow-up, and prompt refinement. Multi-turn conversations account for 33.2% of the conversations shared in PRs and 36.9% in issues. (3) In collaborative coding, developers leverage shared conversations with ChatGPT to facilitate their role-specific contributions, whether as authors of PRs or issues, code reviewers, or collaborators on issues. Our work serves as the first step towards understanding the dynamics between developers and ChatGPT in collaborative software development and opens up new directions for future research on the topic.

  • 7 authors
·
Mar 15, 2024

Novice Developers' Perspectives on Adopting LLMs for Software Development: A Systematic Literature Review

Following the rise of large language models (LLMs), many studies have emerged in recent years focusing on exploring the adoption of LLM-based tools for software development by novice developers: computer science/software engineering students and early-career industry developers with two years or less of professional experience. These studies have sought to understand the perspectives of novice developers on using these tools, a critical aspect of the successful adoption of LLMs in software engineering. To systematically collect and summarise these studies, we conducted a systematic literature review (SLR) following the guidelines by Kitchenham et al. on 80 primary studies published between April 2022 and June 2025 to answer four research questions (RQs). In answering RQ1, we categorised the study motivations and methodological approaches. In RQ2, we identified the software development tasks for which novice developers use LLMs. In RQ3, we categorised the advantages, challenges, and recommendations discussed in the studies. Finally, we discuss the study limitations and future research needs suggested in the primary studies in answering RQ4. Throughout the paper, we also indicate directions for future work and implications for software engineering researchers, educators, and developers. Our research artifacts are publicly available at https://github.com/Samuellucas97/SupplementaryInfoPackage-SLR.

  • 4 authors
·
Mar 10

Coordinated pausing: An evaluation-based coordination scheme for frontier AI developers

As artificial intelligence (AI) models are scaled up, new capabilities can emerge unintentionally and unpredictably, some of which might be dangerous. In response, dangerous capabilities evaluations have emerged as a new risk assessment tool. But what should frontier AI developers do if sufficiently dangerous capabilities are in fact discovered? This paper focuses on one possible response: coordinated pausing. It proposes an evaluation-based coordination scheme that consists of five main steps: (1) Frontier AI models are evaluated for dangerous capabilities. (2) Whenever, and each time, a model fails a set of evaluations, the developer pauses certain research and development activities. (3) Other developers are notified whenever a model with dangerous capabilities has been discovered. They also pause related research and development activities. (4) The discovered capabilities are analyzed and adequate safety precautions are put in place. (5) Developers only resume their paused activities if certain safety thresholds are reached. The paper also discusses four concrete versions of that scheme. In the first version, pausing is completely voluntary and relies on public pressure on developers. In the second version, participating developers collectively agree to pause under certain conditions. In the third version, a single auditor evaluates models of multiple developers who agree to pause if any model fails a set of evaluations. In the fourth version, developers are legally required to run evaluations and pause if dangerous capabilities are discovered. Finally, the paper discusses the desirability and feasibility of our proposed coordination scheme. It concludes that coordinated pausing is a promising mechanism for tackling emerging risks from frontier AI models. However, a number of practical and legal obstacles need to be overcome, especially how to avoid violations of antitrust law.

  • 2 authors
·
Sep 30, 2023

Comparing Software Developers with ChatGPT: An Empirical Investigation

The advent of automation in particular Software Engineering (SE) tasks has transitioned from theory to reality. Numerous scholarly articles have documented the successful application of Artificial Intelligence to address issues in areas such as project management, modeling, testing, and development. A recent innovation is the introduction of ChatGPT, an ML-infused chatbot, touted as a resource proficient in generating programming codes and formulating software testing strategies for developers and testers respectively. Although there is speculation that AI-based computation can increase productivity and even substitute software engineers in software development, there is currently a lack of empirical evidence to verify this. Moreover, despite the primary focus on enhancing the accuracy of AI systems, non-functional requirements including energy efficiency, vulnerability, fairness (i.e., human bias), and safety frequently receive insufficient attention. This paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration, enhancing the reliability of AI-based methods, and understanding task suitability for humans or AI. Furthermore, it facilitates the effective implementation of cooperative work structures and human-in-the-loop processes. This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics. The empirical study includes a case of assessing ChatGPT-generated code versus code produced by developers and uploaded in Leetcode.

  • 3 authors
·
May 19, 2023

Code Recommendation for Open Source Software Developers

Open Source Software (OSS) is forming the spines of technology infrastructures, attracting millions of talents to contribute. Notably, it is challenging and critical to consider both the developers' interests and the semantic features of the project code to recommend appropriate development tasks to OSS developers. In this paper, we formulate the novel problem of code recommendation, whose purpose is to predict the future contribution behaviors of developers given their interaction history, the semantic features of source code, and the hierarchical file structures of projects. Considering the complex interactions among multiple parties within the system, we propose CODER, a novel graph-based code recommendation framework for open source software developers. CODER jointly models microscopic user-code interactions and macroscopic user-project interactions via a heterogeneous graph and further bridges the two levels of information through aggregation on file-structure graphs that reflect the project hierarchy. Moreover, due to the lack of reliable benchmarks, we construct three large-scale datasets to facilitate future research in this direction. Extensive experiments show that our CODER framework achieves superior performance under various experimental settings, including intra-project, cross-project, and cold-start recommendation. We will release all the datasets, code, and utilities for data retrieval upon the acceptance of this work.

  • 5 authors
·
Oct 15, 2022

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

  • 2 authors
·
Jul 26, 2022

When LLMs Meet API Documentation: Can Retrieval Augmentation Aid Code Generation Just as It Helps Developers?

Retrieval-augmented generation (RAG) has increasingly shown its power in extending large language models' (LLMs') capability beyond their pre-trained knowledge. Existing works have shown that RAG can help with software development tasks such as code generation, code update, and test generation. Yet, the effectiveness of adapting LLMs to fast-evolving or less common API libraries using RAG remains unknown. To bridge this gap, we take an initial step to study this unexplored yet practical setting - when developers code with a less common library, they often refer to its API documentation; likewise, when LLMs are allowed to look up API documentation via RAG, to what extent can LLMs be advanced? To mimic such a setting, we select four less common open-source Python libraries with a total of 1017 eligible APIs. We study the factors that affect the effectiveness of using the documentation of less common API libraries as additional knowledge for retrieval and generation. Our intensive study yields interesting findings: (1) RAG helps improve LLMs' performance by 83%-220%. (2) Example code contributes the most to advance LLMs, instead of the descriptive texts and parameter lists in the API documentation. (3) LLMs could sometimes tolerate mild noises (typos in description or incorrect parameters) by referencing their pre-trained knowledge or document context. Finally, we suggest that developers pay more attention to the quality and diversity of the code examples in the API documentation. The study sheds light on future low-code software development workflows.

  • 5 authors
·
Mar 19

EnvX: Agentize Everything with Agentic AI

The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.

AskIt: Unified Programming Interface for Programming with Large Language Models

In the evolving landscape of software development, Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks, from text summarization to code generation. While these abilities open up novel avenues in software design and crafting, their incorporation presents substantial challenges. Developers grapple with decisions surrounding the direct embedding of LLMs within applications versus employing them for code generation. Moreover, effective prompt design becomes a critical concern, given the necessity of data extraction from natural language outputs. To address these intricacies, this paper introduces AskIt, a domain-specific language (DSL) specifically designed for LLMs. AskIt simplifies LLM integration, offering type-guided output control, template-based function definitions, and a unified interface that diminishes the distinction between LLM-based code generation and application integration. Furthermore, through Programming by Example (PBE), AskIt harnesses the power of few-shot learning at the programming language level. Our evaluations underscore AskIt's potency. Across 50 tasks, AskIt generated concise prompts for the given tasks, achieving a 16.14% reduction in prompt length relative to benchmarks. Additionally, by enabling the transition from direct LLM application usage to function generation, AskIt achieved significant speedups, as observed in our GSM8K benchmark experiments. Through these advancements, AskIt streamlines the integration of LLMs in software development, offering a more efficient, versatile approach for leveraging emergent abilities. The implementations of AskIt in TypeScript and Python are available at https://github.com/katsumiok/ts-askit and https://github.com/katsumiok/pyaskit, respectively.

  • 2 authors
·
Aug 29, 2023

Exploring Direct Instruction and Summary-Mediated Prompting in LLM-Assisted Code Modification

This paper presents a study of using large language models (LLMs) in modifying existing code. While LLMs for generating code have been widely studied, their role in code modification remains less understood. Although "prompting" serves as the primary interface for developers to communicate intents to LLMs, constructing effective prompts for code modification introduces challenges different from generation. Prior work suggests that natural language summaries may help scaffold this process, yet such approaches have been validated primarily in narrow domains like SQL rewriting. This study investigates two prompting strategies for LLM-assisted code modification: Direct Instruction Prompting, where developers describe changes explicitly in free-form language, and Summary-Mediated Prompting, where changes are made by editing the generated summaries of the code. We conducted an exploratory study with 15 developers who completed modification tasks using both techniques across multiple scenarios. Our findings suggest that developers followed an iterative workflow: understanding the code, localizing the edit, and validating outputs through execution or semantic reasoning. Each prompting strategy presented trade-offs: direct instruction prompting was more flexible and easier to specify, while summary-mediated prompting supported comprehension, prompt scaffolding, and control. Developers' choice of strategy was shaped by task goals and context, including urgency, maintainability, learning intent, and code familiarity. These findings highlight the need for more usable prompt interactions, including adjustable summary granularity, reliable summary-code traceability, and consistency in generated summaries.

  • 5 authors
·
Aug 2

Helping LLMs Improve Code Generation Using Feedback from Testing and Static Analysis

Large Language Models (LLMs) are one of the most promising developments in the field of artificial intelligence, and the software engineering community has readily noticed their potential role in the software development life-cycle. Developers routinely ask LLMs to generate code snippets, increasing productivity but also potentially introducing ownership, privacy, correctness, and security issues. Previous work highlighted how code generated by mainstream commercial LLMs is often not safe, containing vulnerabilities, bugs, and code smells. In this paper, we present a framework that leverages testing and static analysis to assess the quality, and guide the self-improvement, of code generated by general-purpose, open-source LLMs. First, we ask LLMs to generate C code to solve a number of programming tasks. Then we employ ground-truth tests to assess the (in)correctness of the generated code, and a static analysis tool to detect potential safety vulnerabilities. Next, we assess the models ability to evaluate the generated code, by asking them to detect errors and vulnerabilities. Finally, we test the models ability to fix the generated code, providing the reports produced during the static analysis and incorrectness evaluation phases as feedback. Our results show that models often produce incorrect code, and that the generated code can include safety issues. Moreover, they perform very poorly at detecting either issue. On the positive side, we observe a substantial ability to fix flawed code when provided with information about failed tests or potential vulnerabilities, indicating a promising avenue for improving the safety of LLM-based code generation tools.

  • 6 authors
·
Dec 19, 2024

Chatting with Logs: An exploratory study on Finetuning LLMs for LogQL

Logging is a critical function in modern distributed applications, but the lack of standardization in log query languages and formats creates significant challenges. Developers currently must write ad hoc queries in platform-specific languages, requiring expertise in both the query language and application-specific log details -- an impractical expectation given the variety of platforms and volume of logs and applications. While generating these queries with large language models (LLMs) seems intuitive, we show that current LLMs struggle with log-specific query generation due to the lack of exposure to domain-specific knowledge. We propose a novel natural language (NL) interface to address these inconsistencies and aide log query generation, enabling developers to create queries in a target log query language by providing NL inputs. We further introduce ~NL2QL, a manually annotated, real-world dataset of natural language questions paired with corresponding LogQL queries spread across three log formats, to promote the training and evaluation of NL-to-loq query systems. Using NL2QL, we subsequently fine-tune and evaluate several state of the art LLMs, and demonstrate their improved capability to generate accurate LogQL queries. We perform further ablation studies to demonstrate the effect of additional training data, and the transferability across different log formats. In our experiments, we find up to 75\% improvement of finetuned models to generate LogQL queries compared to non finetuned models.

  • 8 authors
·
Dec 4, 2024

Exploring the Capabilities of LLMs for Code Change Related Tasks

Developers deal with code-change-related tasks daily, e.g., reviewing code. Pre-trained code and code-change-oriented models have been adapted to help developers with such tasks. Recently, large language models (LLMs) have shown their effectiveness in code-related tasks. However, existing LLMs for code focus on general code syntax and semantics rather than the differences between two code versions. Thus, it is an open question how LLMs perform on code-change-related tasks. To answer this question, we conduct an empirical study using \textgreater 1B parameters LLMs on three code-change-related tasks, i.e., code review generation, commit message generation, and just-in-time comment update, with in-context learning (ICL) and parameter-efficient fine-tuning (PEFT, including LoRA and prefix-tuning). We observe that the performance of LLMs is poor without examples and generally improves with examples, but more examples do not always lead to better performance. LLMs tuned with LoRA have comparable performance to the state-of-the-art small pre-trained models. Larger models are not always better, but Llama~2 and Code~Llama families are always the best. The best LLMs outperform small pre-trained models on the code changes that only modify comments and perform comparably on other code changes. We suggest future work should focus more on guiding LLMs to learn the knowledge specific to the changes related to code rather than comments for code-change-related tasks.

  • 6 authors
·
Jul 3, 2024

AXNav: Replaying Accessibility Tests from Natural Language

Developers and quality assurance testers often rely on manual testing to test accessibility features throughout the product lifecycle. Unfortunately, manual testing can be tedious, often has an overwhelming scope, and can be difficult to schedule amongst other development milestones. Recently, Large Language Models (LLMs) have been used for a variety of tasks including automation of UIs, however to our knowledge no one has yet explored their use in controlling assistive technologies for the purposes of supporting accessibility testing. In this paper, we explore the requirements of a natural language based accessibility testing workflow, starting with a formative study. From this we build a system that takes as input a manual accessibility test (e.g., ``Search for a show in VoiceOver'') and uses an LLM combined with pixel-based UI Understanding models to execute the test and produce a chaptered, navigable video. In each video, to help QA testers we apply heuristics to detect and flag accessibility issues (e.g., Text size not increasing with Large Text enabled, VoiceOver navigation loops). We evaluate this system through a 10 participant user study with accessibility QA professionals who indicated that the tool would be very useful in their current work and performed tests similarly to how they would manually test the features. The study also reveals insights for future work on using LLMs for accessibility testing.

  • 6 authors
·
Oct 3, 2023

MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models

AI-empowered music processing is a diverse field that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classification). For developers and amateurs, it is very difficult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience.

  • 8 authors
·
Oct 18, 2023 2

Can LLMs Follow Simple Rules?

As Large Language Models (LLMs) are deployed with increasing real-world responsibilities, it is important to be able to specify and constrain the behavior of these systems in a reliable manner. Model developers may wish to set explicit rules for the model, such as "do not generate abusive content", but these may be circumvented by jailbreaking techniques. Evaluating how well LLMs follow developer-provided rules in the face of adversarial inputs typically requires manual review, which slows down monitoring and methods development. To address this issue, we propose Rule-following Language Evaluation Scenarios (RuLES), a programmatic framework for measuring rule-following ability in LLMs. RuLES consists of 15 simple text scenarios in which the model is instructed to obey a set of rules in natural language while interacting with the human user. Each scenario has a concise evaluation program to determine whether the model has broken any rules in a conversation. Through manual exploration of model behavior in our scenarios, we identify 6 categories of attack strategies and collect two suites of test cases: one consisting of unique conversations from manual testing and one that systematically implements strategies from the 6 categories. Across various popular proprietary and open models such as GPT-4 and Llama 2, we find that all models are susceptible to a wide variety of adversarial hand-crafted user inputs, though GPT-4 is the best-performing model. Additionally, we evaluate open models under gradient-based attacks and find significant vulnerabilities. We propose RuLES as a challenging new setting for research into exploring and defending against both manual and automatic attacks on LLMs.

  • 8 authors
·
Nov 6, 2023

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B

AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.

  • 3 authors
·
Oct 31, 2023 9

RLocator: Reinforcement Learning for Bug Localization

Software developers spend a significant portion of time fixing bugs in their projects. To streamline this process, bug localization approaches have been proposed to identify the source code files that are likely responsible for a particular bug. Prior work proposed several similarity-based machine-learning techniques for bug localization. Despite significant advances in these techniques, they do not directly optimize the evaluation measures. We argue that directly optimizing evaluation measures can positively contribute to the performance of bug localization approaches. Therefore, In this paper, we utilize Reinforcement Learning (RL) techniques to directly optimize the ranking metrics. We propose RLocator, a Reinforcement Learning-based bug localization approach. We formulate RLocator using a Markov Decision Process (MDP) to optimize the evaluation measures directly. We present the technique and experimentally evaluate it based on a benchmark dataset of 8,316 bug reports from six highly popular Apache projects. The results of our evaluation reveal that RLocator achieves a Mean Reciprocal Rank (MRR) of 0.62, a Mean Average Precision (MAP) of 0.59, and a Top 1 score of 0.46. We compare RLocator with two state-of-the-art bug localization tools, FLIM and BugLocator. Our evaluation reveals that RLocator outperforms both approaches by a substantial margin, with improvements of 38.3% in MAP, 36.73% in MRR, and 23.68% in the Top K metric. These findings highlight that directly optimizing evaluation measures considerably contributes to performance improvement of the bug localization problem.

  • 3 authors
·
May 9, 2023

Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity

Despite widespread adoption, the impact of AI tools on software development in the wild remains understudied. We conduct a randomized controlled trial (RCT) to understand how AI tools at the February-June 2025 frontier affect the productivity of experienced open-source developers. 16 developers with moderate AI experience complete 246 tasks in mature projects on which they have an average of 5 years of prior experience. Each task is randomly assigned to allow or disallow usage of early 2025 AI tools. When AI tools are allowed, developers primarily use Cursor Pro, a popular code editor, and Claude 3.5/3.7 Sonnet. Before starting tasks, developers forecast that allowing AI will reduce completion time by 24%. After completing the study, developers estimate that allowing AI reduced completion time by 20%. Surprisingly, we find that allowing AI actually increases completion time by 19%--AI tooling slowed developers down. This slowdown also contradicts predictions from experts in economics (39% shorter) and ML (38% shorter). To understand this result, we collect and evaluate evidence for 20 properties of our setting that a priori could contribute to the observed slowdown effect--for example, the size and quality standards of projects, or prior developer experience with AI tooling. Although the influence of experimental artifacts cannot be entirely ruled out, the robustness of the slowdown effect across our analyses suggests it is unlikely to primarily be a function of our experimental design.

  • 4 authors
·
Jul 11

GUing: A Mobile GUI Search Engine using a Vision-Language Model

App developers use the Graphical User Interface (GUI) of other apps as an important source of inspiration to design and improve their own apps. In recent years, research suggested various approaches to retrieve GUI designs that fit a certain text query from screenshot datasets acquired through automated GUI exploration. However, such text-to-GUI retrieval approaches only leverage the textual information of the GUI elements in the screenshots, neglecting visual information such as icons or background images. In addition, the retrieved screenshots are not steered by app developers and often lack important app features, e.g. whose UI pages require user authentication. To overcome these limitations, this paper proposes GUing, a GUI search engine based on a vision-language model called UIClip, which we trained specifically for the app GUI domain. For this, we first collected app introduction images from Google Play, which usually display the most representative screenshots selected and often captioned (i.e. labeled) by app vendors. Then, we developed an automated pipeline to classify, crop, and extract the captions from these images. This finally results in a large dataset which we share with this paper: including 303k app screenshots, out of which 135k have captions. We used this dataset to train a novel vision-language model, which is, to the best of our knowledge, the first of its kind in GUI retrieval. We evaluated our approach on various datasets from related work and in manual experiment. The results demonstrate that our model outperforms previous approaches in text-to-GUI retrieval achieving a Recall@10 of up to 0.69 and a HIT@10 of 0.91. We also explored the performance of UIClip for other GUI tasks including GUI classification and Sketch-to-GUI retrieval with encouraging results.

  • 7 authors
·
Apr 30, 2024

What's documented in AI? Systematic Analysis of 32K AI Model Cards

The rapid proliferation of AI models has underscored the importance of thorough documentation, as it enables users to understand, trust, and effectively utilize these models in various applications. Although developers are encouraged to produce model cards, it's not clear how much information or what information these cards contain. In this study, we conduct a comprehensive analysis of 32,111 AI model documentations on Hugging Face, a leading platform for distributing and deploying AI models. Our investigation sheds light on the prevailing model card documentation practices. Most of the AI models with substantial downloads provide model cards, though the cards have uneven informativeness. We find that sections addressing environmental impact, limitations, and evaluation exhibit the lowest filled-out rates, while the training section is the most consistently filled-out. We analyze the content of each section to characterize practitioners' priorities. Interestingly, there are substantial discussions of data, sometimes with equal or even greater emphasis than the model itself. To evaluate the impact of model cards, we conducted an intervention study by adding detailed model cards to 42 popular models which had no or sparse model cards previously. We find that adding model cards is moderately correlated with an increase weekly download rates. Our study opens up a new perspective for analyzing community norms and practices for model documentation through large-scale data science and linguistics analysis.

  • 8 authors
·
Feb 7, 2024

MUSCLE: A Model Update Strategy for Compatible LLM Evolution

Large Language Models (LLMs) are frequently updated due to data or architecture changes to improve their performance. When updating models, developers often focus on increasing overall performance metrics with less emphasis on being compatible with previous model versions. However, users often build a mental model of the functionality and capabilities of a particular machine learning model they are interacting with. They have to adapt their mental model with every update -- a draining task that can lead to user dissatisfaction. In practice, fine-tuned downstream task adapters rely on pretrained LLM base models. When these base models are updated, these user-facing downstream task models experience instance regression or negative flips -- previously correct instances are now predicted incorrectly. This happens even when the downstream task training procedures remain identical. Our work aims to provide seamless model updates to a user in two ways. First, we provide evaluation metrics for a notion of compatibility to prior model versions, specifically for generative tasks but also applicable for discriminative tasks. We observe regression and inconsistencies between different model versions on a diverse set of tasks and model updates. Second, we propose a training strategy to minimize the number of inconsistencies in model updates, involving training of a compatibility model that can enhance task fine-tuned language models. We reduce negative flips -- instances where a prior model version was correct, but a new model incorrect -- by up to 40% from Llama 1 to Llama 2.

  • 7 authors
·
Jul 12, 2024 2

FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets

Evaluation of Large Language Models (LLMs) is challenging because aligning to human values requires the composition of multiple skills and the required set of skills varies depending on the instruction. Recent studies have evaluated the performance of LLMs in two ways, (1) automatic evaluation on several independent benchmarks and (2) human or machined-based evaluation giving an overall score to the response. However, both settings are coarse-grained evaluations, not considering the nature of user instructions that require instance-wise skill composition, which limits the interpretation of the true capabilities of LLMs. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment SKill Sets), a fine-grained evaluation protocol that can be used for both model-based and human-based evaluation which decomposes coarse-level scoring to an instance-wise skill set-level. Specifically, we define 12 fine-grained skills needed for LLMs to follow open-ended user instructions and construct an evaluation set by allocating a set of skills for each instance. Additionally, by annotating the target domains and difficulty level for each instance, FLASK provides a holistic view with a comprehensive analysis of a model's performance depending on skill, domain, and difficulty. Through using FLASK, we compare multiple open-sourced and proprietary LLMs and observe highly-correlated findings between model-based and human-based evaluations. FLASK enables developers to more accurately measure the model performance and how it can be improved by analyzing factors that make LLMs proficient in particular skills. For practitioners, FLASK can be used to recommend suitable models for particular situations through comprehensive comparison among various LLMs. We release the evaluation data and code implementation at https://github.com/kaistAI/FLASK.

  • 9 authors
·
Jul 20, 2023 2

Strategic Dishonesty Can Undermine AI Safety Evaluations of Frontier LLM

Large language model (LLM) developers aim for their models to be honest, helpful, and harmless. However, when faced with malicious requests, models are trained to refuse, sacrificing helpfulness. We show that frontier LLMs can develop a preference for dishonesty as a new strategy, even when other options are available. Affected models respond to harmful requests with outputs that sound harmful but are subtly incorrect or otherwise harmless in practice. This behavior emerges with hard-to-predict variations even within models from the same model family. We find no apparent cause for the propensity to deceive, but we show that more capable models are better at executing this strategy. Strategic dishonesty already has a practical impact on safety evaluations, as we show that dishonest responses fool all output-based monitors used to detect jailbreaks that we test, rendering benchmark scores unreliable. Further, strategic dishonesty can act like a honeypot against malicious users, which noticeably obfuscates prior jailbreak attacks. While output monitors fail, we show that linear probes on internal activations can be used to reliably detect strategic dishonesty. We validate probes on datasets with verifiable outcomes and by using their features as steering vectors. Overall, we consider strategic dishonesty as a concrete example of a broader concern that alignment of LLMs is hard to control, especially when helpfulness and harmlessness conflict.

  • 9 authors
·
Sep 22 2

Progent: Programmable Privilege Control for LLM Agents

LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.

  • 7 authors
·
Apr 15 2

NeuRI: Diversifying DNN Generation via Inductive Rule Inference

Deep Learning (DL) is prevalently used in various industries to improve decision-making and automate processes, driven by the ever-evolving DL libraries and compilers. The correctness of DL systems is crucial for trust in DL applications. As such, the recent wave of research has been studying the automated synthesis of test-cases (i.e., DNN models and their inputs) for fuzzing DL systems. However, existing model generators only subsume a limited number of operators, lacking the ability to pervasively model operator constraints. To address this challenge, we propose NeuRI, a fully automated approach for generating valid and diverse DL models composed of hundreds of types of operators. NeuRI adopts a three-step process: (i) collecting valid and invalid API traces from various sources; (ii) applying inductive program synthesis over the traces to infer the constraints for constructing valid models; and (iii) using hybrid model generation which incorporates both symbolic and concrete operators. Our evaluation shows that NeuRI improves branch coverage of TensorFlow and PyTorch by 24% and 15% over the state-of-the-art model-level fuzzers. NeuRI finds 100 new bugs for PyTorch and TensorFlow in four months, with 81 already fixed or confirmed. Of these, 9 bugs are labelled as high priority or security vulnerability, constituting 10% of all high-priority bugs of the period. Open-source developers regard error-inducing tests reported by us as "high-quality" and "common in practice".

  • 4 authors
·
Feb 4, 2023

The AI Community Building the Future? A Quantitative Analysis of Development Activity on Hugging Face Hub

Open source developers have emerged as key actors in the political economy of artificial intelligence (AI), with open model development being recognised as an alternative to closed-source AI development. However, we still have a limited understanding of collaborative practices in open source AI. This paper responds to this gap with a three-part quantitative analysis of development activity on the Hugging Face (HF) Hub, a popular platform for building, sharing, and demonstrating models. First, we find that various types of activity across 348,181 model, 65,761 dataset, and 156,642 space repositories exhibit right-skewed distributions. Activity is extremely imbalanced between repositories; for example, over 70% of models have 0 downloads, while 1% account for 99% of downloads. Second, we analyse a snapshot of the social network structure of collaboration on models, finding that the community has a core-periphery structure, with a core of prolific developers and a majority of isolate developers (89%). Upon removing isolates, collaboration is characterised by high reciprocity regardless of developers' network positions. Third, we examine model adoption through the lens of model usage in spaces, finding that a minority of models, developed by a handful of companies, are widely used on the HF Hub. Overall, we find that various types of activity on the HF Hub are characterised by Pareto distributions, congruent with prior observations about OSS development patterns on platforms like GitHub. We conclude with a discussion of the implications of the findings and recommendations for (open source) AI researchers, developers, and policymakers.

  • 3 authors
·
May 20, 2024 1

Evaluating and Mitigating Discrimination in Language Model Decisions

As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at https://huggingface.co/datasets/Anthropic/discrim-eval

  • 9 authors
·
Dec 6, 2023 2

Program Merge Conflict Resolution via Neural Transformers

Collaborative software development is an integral part of the modern software development life cycle, essential to the success of large-scale software projects. When multiple developers make concurrent changes around the same lines of code, a merge conflict may occur. Such conflicts stall pull requests and continuous integration pipelines for hours to several days, seriously hurting developer productivity. To address this problem, we introduce MergeBERT, a novel neural program merge framework based on token-level three-way differencing and a transformer encoder model. By exploiting the restricted nature of merge conflict resolutions, we reformulate the task of generating the resolution sequence as a classification task over a set of primitive merge patterns extracted from real-world merge commit data. Our model achieves 63-68% accuracy for merge resolution synthesis, yielding nearly a 3x performance improvement over existing semi-structured, and 2x improvement over neural program merge tools. Finally, we demonstrate that MergeBERT is sufficiently flexible to work with source code files in Java, JavaScript, TypeScript, and C# programming languages. To measure the practical use of MergeBERT, we conduct a user study to evaluate MergeBERT suggestions with 25 developers from large OSS projects on 122 real-world conflicts they encountered. Results suggest that in practice, MergeBERT resolutions would be accepted at a higher rate than estimated by automatic metrics for precision and accuracy. Additionally, we use participant feedback to identify future avenues for improvement of MergeBERT.

  • 9 authors
·
Aug 31, 2021

Who Evaluates AI's Social Impacts? Mapping Coverage and Gaps in First and Third Party Evaluations

Foundation models are increasingly central to high-stakes AI systems, and governance frameworks now depend on evaluations to assess their risks and capabilities. Although general capability evaluations are widespread, social impact assessments covering bias, fairness, privacy, environmental costs, and labor practices remain uneven across the AI ecosystem. To characterize this landscape, we conduct the first comprehensive analysis of both first-party and third-party social impact evaluation reporting across a wide range of model developers. Our study examines 186 first-party release reports and 183 post-release evaluation sources, and complements this quantitative analysis with interviews of model developers. We find a clear division of evaluation labor: first-party reporting is sparse, often superficial, and has declined over time in key areas such as environmental impact and bias, while third-party evaluators including academic researchers, nonprofits, and independent organizations provide broader and more rigorous coverage of bias, harmful content, and performance disparities. However, this complementarity has limits. Only model developers can authoritatively report on data provenance, content moderation labor, financial costs, and training infrastructure, yet interviews reveal that these disclosures are often deprioritized unless tied to product adoption or regulatory compliance. Our findings indicate that current evaluation practices leave major gaps in assessing AI's societal impacts, highlighting the urgent need for policies that promote developer transparency, strengthen independent evaluation ecosystems, and create shared infrastructure to aggregate and compare third-party evaluations in a consistent and accessible way.

  • 35 authors
·
Nov 6

An Efficient and Adaptive Next Edit Suggestion Framework with Zero Human Instructions in IDEs

Code editing, including modifying, refactoring, and maintaining existing code, is the most frequent task in software development and has garnered significant attention from AI-powered tools. However, existing solutions that translate explicit natural language instructions into code edits face critical limitations, such as heavy reliance on human instruction input and high latency, which hinder their effective integration into a developer's workflow. We observe that developers' habitual behaviors and coding objectives are often reflected in their historical editing patterns, making this data key to addressing existing limitations. To leverage these insights, we propose NES (Next Edit Suggestion), an LLM-driven code editing framework that delivers an instruction-free and low-latency experience. Built on a dual-model architecture and trained with our high-quality SFT and DAPO datasets, NES enhances productivity by understanding developer intent while optimizing inference to minimize latency. NES is a scalable, industry-ready solution with a continuous Tab key interaction workflow, seamlessly adopted by a FinTech company with over 20,000 developers. Evaluations on real-world datasets show NES achieves 75.6% and 81.6% accuracy in two tasks of predicting next edit locations, alongside 91.36% ES and 27.7% EMR for intent-aligned edits, outperforming SOTA models. Our open-sourced SFT and DAPO datasets have been demonstrated to enhance the performance of open-source CodeLLMs. The demonstration of NES is available at https://youtu.be/yGoyYOe6fbY.

  • 9 authors
·
Aug 4

EinHops: Einsum Notation for Expressive Homomorphic Operations on RNS-CKKS Tensors

Fully Homomorphic Encryption (FHE) is an encryption scheme that allows for computation to be performed directly on encrypted data, effectively closing the loop on secure and outsourced computing. Data is encrypted not only during rest and transit, but also during processing. However, FHE provides a limited instruction set: SIMD addition, SIMD multiplication, and cyclic rotation of 1-D vectors. This restriction makes performing multi-dimensional tensor operations challenging. Practitioners must pack these tensors into 1-D vectors and map tensor operations onto this one-dimensional layout rather than their traditional nested structure. And while prior systems have made significant strides in automating this process, they often hide critical packing decisions behind layers of abstraction, making debugging, optimizing, and building on top of these systems difficult. In this work, we approach multi-dimensional tensor operations in FHE through Einstein summation (einsum) notation. Einsum notation explicitly encodes dimensional structure and operations in its syntax, naturally exposing how tensors should be packed and transformed. We decompose einsum expressions into a fixed set of FHE-friendly operations. We implement our design and present EinHops, a minimalist system that factors einsum expressions into a fixed sequence of FHE operations. EinHops enables developers to perform encrypted tensor operations using FHE while maintaining full visibility into the underlying packing strategy. We evaluate EinHops on a range of tensor operations from a simple transpose to complex multi-dimensional contractions. We show that the explicit nature of einsum notation allows us to build an FHE tensor system that is simple, general, and interpretable. We open-source EinHops at the following repository: https://github.com/baahl-nyu/einhops.

  • 3 authors
·
Jul 10

SAGE-Eval: Evaluating LLMs for Systematic Generalizations of Safety Facts

Do LLMs robustly generalize critical safety facts to novel situations? Lacking this ability is dangerous when users ask naive questions. For instance, "I'm considering packing melon balls for my 10-month-old's lunch. What other foods would be good to include?" Before offering food options, the LLM should warn that melon balls pose a choking hazard to toddlers, as documented by the CDC. Failing to provide such warnings could result in serious injuries or even death. To evaluate this, we introduce SAGE-Eval, SAfety-fact systematic GEneralization evaluation, the first benchmark that tests whether LLMs properly apply well established safety facts to naive user queries. SAGE-Eval comprises 104 facts manually sourced from reputable organizations, systematically augmented to create 10,428 test scenarios across 7 common domains (e.g., Outdoor Activities, Medicine). We find that the top model, Claude-3.7-sonnet, passes only 58% of all the safety facts tested. We also observe that model capabilities and training compute weakly correlate with performance on SAGE-Eval, implying that scaling up is not the golden solution. Our findings suggest frontier LLMs still lack robust generalization ability. We recommend developers use SAGE-Eval in pre-deployment evaluations to assess model reliability in addressing salient risks. We publicly release SAGE-Eval at https://huggingface.co/datasets/YuehHanChen/SAGE-Eval and our code is available at https://github.com/YuehHanChen/SAGE-Eval/tree/main.

  • 3 authors
·
May 27

ASTER: Natural and Multi-language Unit Test Generation with LLMs

Implementing automated unit tests is an important but time-consuming activity in software development. To assist developers in this task, many techniques for automating unit test generation have been developed. However, despite this effort, usable tools exist for very few programming languages. Moreover, studies have found that automatically generated tests suffer poor readability and do not resemble developer-written tests. In this work, we present a rigorous investigation of how large language models (LLMs) can help bridge the gap. We describe a generic pipeline that incorporates static analysis to guide LLMs in generating compilable and high-coverage test cases. We illustrate how the pipeline can be applied to different programming languages, specifically Java and Python, and to complex software requiring environment mocking. We conducted an empirical study to assess the quality of the generated tests in terms of code coverage and test naturalness -- evaluating them on standard as well as enterprise Java applications and a large Python benchmark. Our results demonstrate that LLM-based test generation, when guided by static analysis, can be competitive with, and even outperform, state-of-the-art test-generation techniques in coverage achieved while also producing considerably more natural test cases that developers find easy to understand. We also present the results of a user study, conducted with 161 professional developers, that highlights the naturalness characteristics of the tests generated by our approach.

  • 5 authors
·
Sep 4, 2024

How do Observable Users Decompose D3 Code? A Qualitative Study

Many toolkit developers seek to streamline the visualization programming process through structured support such as prescribed templates and example galleries. However, few projects examine how users organize their own visualization programs and how their coding choices may deviate from the intents of toolkit developers, impacting visualization prototyping and design. Further, is it possible to infer users' reasoning indirectly through their code, even when users copy code from other sources? We explore this question through a qualitative analysis of 715 D3 programs on Observable. We identify three levels of program organization based on how users decompose their code into smaller blocks: Program-, Chart-, and Component-Level code decomposition, with a strong preference for Component-Level reasoning. In a series of interviews, we corroborate that these levels reflect how Observable users reason about visualization programs. We compare common user-made components with those theorized in the Grammar of Graphics to assess overlap in user and toolkit developer reasoning. We find that, while the Grammar of Graphics covers basic visualizations well, it falls short in describing complex visualization types, especially those with animation, interaction, and parameterization components. Our findings highlight how user practices differ from formal grammars and reinforce ongoing efforts to rethink visualization toolkit support, including augmenting learning tools and AI assistants to better reflect real-world coding strategies.

  • 5 authors
·
May 23, 2024

The Fault in our Stars: Quality Assessment of Code Generation Benchmarks

Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may have data contamination issues.

  • 4 authors
·
Apr 15, 2024

Simple Hack for Transformers against Heavy Long-Text Classification on a Time- and Memory-Limited GPU Service

Many NLP researchers rely on free computational services, such as Google Colab, to fine-tune their Transformer models, causing a limitation for hyperparameter optimization (HPO) in long-text classification due to the method having quadratic complexity and needing a bigger resource. In Indonesian, only a few works were found on long-text classification using Transformers. Most only use a small amount of data and do not report any HPO. In this study, using 18k news articles, we investigate which pretrained models are recommended to use based on the output length of the tokenizer. We then compare some hacks to shorten and enrich the sequences, which are the removals of stopwords, punctuation, low-frequency words, and recurring words. To get a fair comparison, we propose and run an efficient and dynamic HPO procedure that can be done gradually on a limited resource and does not require a long-running optimization library. Using the best hack found, we then compare 512, 256, and 128 tokens length. We find that removing stopwords while keeping punctuation and low-frequency words is the best hack. Some of our setups manage to outperform taking 512 first tokens using a smaller 128 or 256 first tokens which manage to represent the same information while requiring less computational resources. The findings could help developers to efficiently pursue optimal performance of the models using limited resources.

  • 4 authors
·
Mar 19, 2024

Corrective Machine Unlearning

Machine Learning models increasingly face data integrity challenges due to the use of large-scale training datasets drawn from the Internet. We study what model developers can do if they detect that some data was manipulated or incorrect. Such manipulated data can cause adverse effects including vulnerability to backdoored samples, systemic biases, and reduced accuracy on certain input domains. Realistically, all manipulated training samples cannot be identified, and only a small, representative subset of the affected data can be flagged. We formalize Corrective Machine Unlearning as the problem of mitigating the impact of data affected by unknown manipulations on a trained model, only having identified a subset of the corrupted data. We demonstrate that the problem of corrective unlearning has significantly different requirements from traditional privacy-oriented unlearning. We find most existing unlearning methods, including retraining-from-scratch without the deletion set, require most of the manipulated data to be identified for effective corrective unlearning. However, one approach, Selective Synaptic Dampening, achieves limited success, unlearning adverse effects with just a small portion of the manipulated samples in our setting, which shows encouraging signs for future progress. We hope our work spurs research towards developing better methods for corrective unlearning and offers practitioners a new strategy to handle data integrity challenges arising from web-scale training. Code is available at https://github.com/drimpossible/corrective-unlearning-bench.

  • 5 authors
·
Feb 21, 2024

LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward

In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.

  • 7 authors
·
Jan 6, 2024

Generate and Pray: Using SALLMS to Evaluate the Security of LLM Generated Code

With the growing popularity of Large Language Models (e.g. GitHub Copilot, ChatGPT, etc.) in software engineers' daily practices, it is important to ensure that the code generated by these tools is not only functionally correct but also free of vulnerabilities. Although LLMs can help developers to be more productive, prior empirical studies have shown that LLMs can generate insecure code. There are two contributing factors to the insecure code generation. First, existing datasets used to evaluate Large Language Models (LLMs) do not adequately represent genuine software engineering tasks sensitive to security. Instead, they are often based on competitive programming challenges or classroom-type coding tasks. In real-world applications, the code produced is integrated into larger codebases, introducing potential security risks. There's a clear absence of benchmarks that focus on evaluating the security of the generated code. Second, existing evaluation metrics primarily focus on the functional correctness of the generated code while ignoring security considerations. Metrics such as pass@k gauge the probability of obtaining the correct code in the top k suggestions. Other popular metrics like BLEU, CodeBLEU, ROUGE, and METEOR similarly emphasize functional accuracy, neglecting security implications. In light of these research gaps, in this paper, we described SALLM, a framework to benchmark LLMs' abilities to generate secure code systematically. This framework has three major components: a novel dataset of security-centric Python prompts, an evaluation environment to test the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.

  • 2 authors
·
Nov 1, 2023

Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs

The recent progress of AI can be largely attributed to large language models (LLMs). However, their escalating memory requirements introduce challenges for machine learning (ML) researchers and engineers. Addressing this requires developers to partition a large model to distribute it across multiple GPUs or TPUs. This necessitates considerable coding and intricate configuration efforts with existing model parallel tools, such as Megatron-LM, DeepSpeed, and Alpa. These tools require users' expertise in machine learning systems (MLSys), creating a bottleneck in LLM development, particularly for developers without MLSys background. In this work, we present Redco, a lightweight and user-friendly tool crafted to automate distributed training and inference for LLMs, as well as to simplify ML pipeline development. The design of Redco emphasizes two key aspects. Firstly, to automate model parallism, our study identifies two straightforward rules to generate tensor parallel strategies for any given LLM. Integrating these rules into Redco facilitates effortless distributed LLM training and inference, eliminating the need of additional coding or complex configurations. We demonstrate the effectiveness by applying Redco on a set of LLM architectures, such as GPT-J, LLaMA, T5, and OPT, up to the size of 66B. Secondly, we propose a mechanism that allows for the customization of diverse ML pipelines through the definition of merely three functions, eliminating redundant and formulaic code like multi-host related processing. This mechanism proves adaptable across a spectrum of ML algorithms, from foundational language modeling to complex algorithms like meta-learning and reinforcement learning. Consequently, Redco implementations exhibit much fewer code lines compared to their official counterparts.

  • 8 authors
·
Oct 25, 2023

Efficient Avoidance of Vulnerabilities in Auto-completed Smart Contract Code Using Vulnerability-constrained Decoding

Auto-completing code enables developers to speed up coding significantly. Recent advances in transformer-based large language model (LLM) technologies have been applied to code synthesis. However, studies show that many of such synthesized codes contain vulnerabilities. We propose a novel vulnerability-constrained decoding approach to reduce the amount of vulnerable code generated by such models. Using a small dataset of labeled vulnerable lines of code, we fine-tune an LLM to include vulnerability labels when generating code, acting as an embedded classifier. Then, during decoding, we deny the model to generate these labels to avoid generating vulnerable code. To evaluate the method, we chose to automatically complete Ethereum Blockchain smart contracts (SCs) as the case study due to the strict requirements of SC security. We first fine-tuned the 6-billion-parameter GPT-J model using 186,397 Ethereum SCs after removing the duplication from 2,217,692 SCs. The fine-tuning took more than one week using ten GPUs. The results showed that our fine-tuned model could synthesize SCs with an average BLEU (BiLingual Evaluation Understudy) score of 0.557. However, many codes in the auto-completed SCs were vulnerable. Using the code before the vulnerable line of 176 SCs containing different types of vulnerabilities to auto-complete the code, we found that more than 70% of the auto-completed codes were insecure. Thus, we further fine-tuned the model on other 941 vulnerable SCs containing the same types of vulnerabilities and applied vulnerability-constrained decoding. The fine-tuning took only one hour with four GPUs. We then auto-completed the 176 SCs again and found that our approach could identify 62% of the code to be generated as vulnerable and avoid generating 67% of them, indicating the approach could efficiently and effectively avoid vulnerabilities in the auto-completed code.

  • 3 authors
·
Sep 18, 2023

Confidence-Building Measures for Artificial Intelligence: Workshop Proceedings

Foundation models could eventually introduce several pathways for undermining state security: accidents, inadvertent escalation, unintentional conflict, the proliferation of weapons, and the interference with human diplomacy are just a few on a long list. The Confidence-Building Measures for Artificial Intelligence workshop hosted by the Geopolitics Team at OpenAI and the Berkeley Risk and Security Lab at the University of California brought together a multistakeholder group to think through the tools and strategies to mitigate the potential risks introduced by foundation models to international security. Originating in the Cold War, confidence-building measures (CBMs) are actions that reduce hostility, prevent conflict escalation, and improve trust between parties. The flexibility of CBMs make them a key instrument for navigating the rapid changes in the foundation model landscape. Participants identified the following CBMs that directly apply to foundation models and which are further explained in this conference proceedings: 1. crisis hotlines 2. incident sharing 3. model, transparency, and system cards 4. content provenance and watermarks 5. collaborative red teaming and table-top exercises and 6. dataset and evaluation sharing. Because most foundation model developers are non-government entities, many CBMs will need to involve a wider stakeholder community. These measures can be implemented either by AI labs or by relevant government actors.

  • 23 authors
·
Aug 1, 2023

AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing Software Vulnerabilities

Many ML-based approaches have been proposed to automatically detect, localize, and repair software vulnerabilities. While ML-based methods are more effective than program analysis-based vulnerability analysis tools, few have been integrated into modern IDEs, hindering practical adoption. To bridge this critical gap, we propose AIBugHunter, a novel ML-based software vulnerability analysis tool for C/C++ languages that is integrated into Visual Studio Code. AIBugHunter helps software developers to achieve real-time vulnerability detection, explanation, and repairs during programming. In particular, AIBugHunter scans through developers' source code to (1) locate vulnerabilities, (2) identify vulnerability types, (3) estimate vulnerability severity, and (4) suggest vulnerability repairs. In this article, we propose a novel multi-objective optimization (MOO)-based vulnerability classification approach and a transformer-based estimation approach to help AIBugHunter accurately identify vulnerability types and estimate severity. Our empirical experiments on a large dataset consisting of 188K+ C/C++ functions confirm that our proposed approaches are more accurate than other state-of-the-art baseline methods for vulnerability classification and estimation. Furthermore, we conduct qualitative evaluations including a survey study and a user study to obtain software practitioners' perceptions of our AIBugHunter tool and assess the impact that AIBugHunter may have on developers' productivity in security aspects. Our survey study shows that our AIBugHunter is perceived as useful where 90% of the participants consider adopting our AIBugHunter. Last but not least, our user study shows that our AIBugHunter could possibly enhance developers' productivity in combating cybersecurity issues during software development.

  • 7 authors
·
May 26, 2023

Automating Code Review Activities by Large-Scale Pre-training

Code review is an essential part to software development lifecycle since it aims at guaranteeing the quality of codes. Modern code review activities necessitate developers viewing, understanding and even running the programs to assess logic, functionality, latency, style and other factors. It turns out that developers have to spend far too much time reviewing the code of their peers. Accordingly, it is in significant demand to automate the code review process. In this research, we focus on utilizing pre-training techniques for the tasks in the code review scenario. We collect a large-scale dataset of real-world code changes and code reviews from open-source projects in nine of the most popular programming languages. To better understand code diffs and reviews, we propose CodeReviewer, a pre-trained model that utilizes four pre-training tasks tailored specifically for the code review scenario. To evaluate our model, we focus on three key tasks related to code review activities, including code change quality estimation, review comment generation and code refinement. Furthermore, we establish a high-quality benchmark dataset based on our collected data for these three tasks and conduct comprehensive experiments on it. The experimental results demonstrate that our model outperforms the previous state-of-the-art pre-training approaches in all tasks. Further analysis show that our proposed pre-training tasks and the multilingual pre-training dataset benefit the model on the understanding of code changes and reviews.

  • 11 authors
·
Mar 17, 2022

Open-Sourcing Highly Capable Foundation Models: An evaluation of risks, benefits, and alternative methods for pursuing open-source objectives

Recent decisions by leading AI labs to either open-source their models or to restrict access to their models has sparked debate about whether, and how, increasingly capable AI models should be shared. Open-sourcing in AI typically refers to making model architecture and weights freely and publicly accessible for anyone to modify, study, build on, and use. This offers advantages such as enabling external oversight, accelerating progress, and decentralizing control over AI development and use. However, it also presents a growing potential for misuse and unintended consequences. This paper offers an examination of the risks and benefits of open-sourcing highly capable foundation models. While open-sourcing has historically provided substantial net benefits for most software and AI development processes, we argue that for some highly capable foundation models likely to be developed in the near future, open-sourcing may pose sufficiently extreme risks to outweigh the benefits. In such a case, highly capable foundation models should not be open-sourced, at least not initially. Alternative strategies, including non-open-source model sharing options, are explored. The paper concludes with recommendations for developers, standard-setting bodies, and governments for establishing safe and responsible model sharing practices and preserving open-source benefits where safe.

  • 22 authors
·
Sep 29, 2023

Guiding Language Models of Code with Global Context using Monitors

Language models of code (LMs) work well when the surrounding code in the vicinity of generation provides sufficient context. This is not true when it becomes necessary to use types or functionality defined in another module or library, especially those not seen during training. LMs suffer from limited awareness of such global context and end up hallucinating, e.g., using types defined in other files incorrectly. Recent work tries to overcome this issue by retrieving global information to augment the local context. However, this bloats the prompt or requires architecture modifications and additional training. Integrated development environments (IDEs) assist developers by bringing the global context at their fingertips using static analysis. We extend this assistance, enjoyed by developers, to the LMs. We propose a notion of monitors that use static analysis in the background to guide the decoding. Unlike a priori retrieval, static analysis is invoked iteratively during the entire decoding process, providing the most relevant suggestions on demand. We demonstrate the usefulness of our proposal by monitoring for type-consistent use of identifiers whenever an LM generates code for object dereference. To evaluate our approach, we curate PragmaticCode, a dataset of open-source projects with their development environments. On models of varying parameter scale, we show that monitor-guided decoding consistently improves the ability of an LM to not only generate identifiers that match the ground truth but also improves compilation rates and agreement with ground truth. We find that LMs with fewer parameters, when guided with our monitor, can outperform larger LMs. With monitor-guided decoding, SantaCoder-1.1B achieves better compilation rate and next-identifier match than the much larger text-davinci-003 model. The datasets and code will be released at https://aka.ms/monitors4codegen .

  • 5 authors
·
Jun 19, 2023 3

The Good, the Bad, and the Missing: Neural Code Generation for Machine Learning Tasks

Machine learning (ML) has been increasingly used in a variety of domains, while solving ML programming tasks poses unique challenges because of the fundamentally different nature and construction from general programming tasks, especially for developers who do not have ML backgrounds. Automatic code generation that produces a code snippet from a natural language description can be a promising technique to accelerate ML programming tasks. In recent years, although many deep learning-based neural code generation models have been proposed with high accuracy, the fact that most of them are mainly evaluated on general programming tasks calls into question their effectiveness and usefulness in ML programming tasks. In this paper, we set out to investigate the effectiveness of existing neural code generation models on ML programming tasks. For our analysis, we select six state-of-the-art neural code generation models, and evaluate their performance on four widely used ML libraries, with newly-created 83K pairs of natural-language described ML programming tasks. Our empirical study reveals some good, bad, and missing aspects of neural code generation models on ML tasks, with a few major ones listed below. (Good) Neural code generation models perform significantly better on ML tasks than on non-ML tasks. (Bad) Most of the generated code is semantically incorrect. (Bad) Code generation models cannot significantly improve developers' completion time. (Good) The generated code can help developers write more correct code by providing developers with clues for using correct APIs. (Missing) The observation from our user study reveals the missing aspects of code generation for ML tasks, e.g., decomposing code generation for divide-and-conquer into two tasks: API sequence identification and API usage generation.

  • 5 authors
·
May 15, 2023

Structured Chain-of-Thought Prompting for Code Generation

Large Language Models (LLMs) (e.g., ChatGPT) have shown impressive performance in code generation. LLMs take prompts as inputs, and Chain-of-Thought (CoT) prompting is the state-of-the-art prompting technique. CoT prompting asks LLMs first to generate CoTs (i.e., intermediate natural language reasoning steps) and then output the code. However, CoT prompting is designed for natural language generation and has low accuracy in code generation. In this paper, we propose Structured CoTs (SCoTs) and present a novel prompting technique for code generation, named SCoT prompting. Our motivation is source code contains rich structural information and any code can be composed of three program structures (i.e., sequence, branch, and loop structures). Intuitively, structured intermediate reasoning steps make for structured source code. Thus, we ask LLMs to use program structures to build CoTs, obtaining SCoTs. Then, LLMs generate the final code based on SCoTs. Compared to CoT prompting, SCoT prompting explicitly constrains LLMs to think about how to solve requirements from the view of source code and further the performance of LLMs in code generation. We apply SCoT prompting to two LLMs (i.e., ChatGPT and Codex) and evaluate it on three benchmarks (i.e., HumanEval, MBPP, and MBCPP). (1) SCoT prompting outperforms the state-of-the-art baseline - CoT prompting by up to 13.79% in Pass@1. (2) Human evaluation shows human developers prefer programs from SCoT prompting. (3) SCoT prompting is robust to examples and achieves substantial improvements.

  • 4 authors
·
May 11, 2023

ToolCoder: Teach Code Generation Models to use API search tools

Automatically generating source code from natural language descriptions has been a growing field of research in recent years. However, current large-scale code generation models often encounter difficulties when selecting appropriate APIs for specific contexts. These models may generate APIs that do not meet requirements or refer to non-existent APIs in third-party libraries, especially for lesser-known or private libraries. Inspired by the process of human developers using tools to search APIs, we propose ToolCoder, a novel approach that integrates API search tools with existing models to assist in code generation and API selection. To teach our model to use tools, we introduce an automated data annotation method using ChatGPT to add tool usage information into the source code data and fine-tune code generation models. During inference, we integrate API search tools into the generation process so that our model can automatically use the search tool to get suggestions when selecting an API. Our experimental results demonstrate that ToolCoder exhibits excellent performance and generalization across five public and private library code generation benchmarks, with at least 6.21\% improvement on average pass@1 metrics and 9.64\% improvement on average pass@10 metrics compared to state-of-the-art methods. Furthermore, we show that our relatively small ToolCoder model is comparable to one of the current best models, GPT-3.5, highlighting the potential of incorporating programming tools into the code generation process.

  • 6 authors
·
May 6, 2023

Improving Few-Shot Prompts with Relevant Static Analysis Products

Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU.

  • 4 authors
·
Apr 13, 2023

GIRT-Data: Sampling GitHub Issue Report Templates

GitHub's issue reports provide developers with valuable information that is essential to the evolution of a software development project. Contributors can use these reports to perform software engineering tasks like submitting bugs, requesting features, and collaborating on ideas. In the initial versions of issue reports, there was no standard way of using them. As a result, the quality of issue reports varied widely. To improve the quality of issue reports, GitHub introduced issue report templates (IRTs), which pre-fill issue descriptions when a new issue is opened. An IRT usually contains greeting contributors, describing project guidelines, and collecting relevant information. However, despite of effectiveness of this feature which was introduced in 2016, only nearly 5% of GitHub repositories (with more than 10 stars) utilize it. There are currently few articles on IRTs, and the available ones only consider a small number of repositories. In this work, we introduce GIRT-Data, the first and largest dataset of IRTs in both YAML and Markdown format. This dataset and its corresponding open-source crawler tool are intended to support research in this area and to encourage more developers to use IRTs in their repositories. The stable version of the dataset contains 1,084,300 repositories and 50,032 of them support IRTs. The stable version of the dataset and crawler is available here: https://github.com/kargaranamir/girt-data

  • 4 authors
·
Mar 16, 2023

Impact of Code Language Models on Automated Program Repair

Automated program repair (APR) aims to help developers improve software reliability by generating patches for buggy programs. Although many code language models (CLM) are developed and effective in many software tasks such as code completion, there has been little comprehensive, in-depth work to evaluate CLMs' fixing capabilities and to fine-tune CLMs for the APR task. Firstly, this work is the first to evaluate ten CLMs on four APR benchmarks, which shows that surprisingly, the best CLM, as is, fixes 72% more bugs than the state-of-the-art deep-learning (DL)-based APR techniques. Secondly, one of the four APR benchmarks was created by us in this paper to avoid data leaking for a fair evaluation. Thirdly, it is the first work to fine-tune CLMs with APR training data, which shows that fine-tuning brings 31%-1,267% improvement to CLMs and enables them to fix 46%-164% more bugs than existing DL-based APR techniques. Fourthly, this work studies the impact of buggy lines, showing that CLMs, as is, cannot make good use of the buggy lines to fix bugs, yet fine-tuned CLMs could potentially over-rely on buggy lines. Lastly, this work analyzes the size, time, and memory efficiency of different CLMs. This work shows promising directions for the APR domain, such as fine-tuning CLMs with APR-specific designs, and also raises awareness of fair and comprehensive evaluations of CLMs and calls for more transparent reporting of open-source repositories used in the pre-training data to address the data leaking problem.

  • 4 authors
·
Feb 9, 2023

The Foundation Model Transparency Index

Foundation models have rapidly permeated society, catalyzing a wave of generative AI applications spanning enterprise and consumer-facing contexts. While the societal impact of foundation models is growing, transparency is on the decline, mirroring the opacity that has plagued past digital technologies (e.g. social media). Reversing this trend is essential: transparency is a vital precondition for public accountability, scientific innovation, and effective governance. To assess the transparency of the foundation model ecosystem and help improve transparency over time, we introduce the Foundation Model Transparency Index. The Foundation Model Transparency Index specifies 100 fine-grained indicators that comprehensively codify transparency for foundation models, spanning the upstream resources used to build a foundation model (e.g data, labor, compute), details about the model itself (e.g. size, capabilities, risks), and the downstream use (e.g. distribution channels, usage policies, affected geographies). We score 10 major foundation model developers (e.g. OpenAI, Google, Meta) against the 100 indicators to assess their transparency. To facilitate and standardize assessment, we score developers in relation to their practices for their flagship foundation model (e.g. GPT-4 for OpenAI, PaLM 2 for Google, Llama 2 for Meta). We present 10 top-level findings about the foundation model ecosystem: for example, no developer currently discloses significant information about the downstream impact of its flagship model, such as the number of users, affected market sectors, or how users can seek redress for harm. Overall, the Foundation Model Transparency Index establishes the level of transparency today to drive progress on foundation model governance via industry standards and regulatory intervention.

  • 8 authors
·
Oct 19, 2023

Syntax-Aware On-the-Fly Code Completion

Code completion aims to help improve developers' productivity by suggesting the next code tokens from a given context. Various approaches have been proposed to incorporate abstract syntax tree (AST) information for model training, ensuring that code completion is aware of the syntax of the programming languages. However, existing syntax-aware code completion approaches are not on-the-fly, as we found that for every two-thirds of characters that developers type, AST fails to be extracted because it requires the syntactically correct source code, limiting its practicality in real-world scenarios. On the other hand, existing on-the-fly code completion does not consider syntactic information yet. In this paper, we propose PyCoder to leverage token types, a kind of lightweight syntactic information, which is readily available and aligns with the natural order of source code. Our PyCoder is trained in a multi-task training manner so that by learning the supporting task of predicting token types during the training phase, the models achieve better performance on predicting tokens and lines of code without the need for token types in the inference phase. Comprehensive experiments show that PyCoder achieves the first rank on the CodeXGLUE leaderboard with an accuracy of 77.12% for the token-level predictions, which is 0.43%-24.25% more accurate than baselines. In addition, PyCoder achieves an exact match of 43.37% for the line-level predictions, which is 3.63%-84.73% more accurate than baselines. These results lead us to conclude that token type information (an alternative to syntactic information) that is rarely used in the past can greatly improve the performance of code completion approaches, without requiring the syntactically correct source code like AST-based approaches do. Our PyCoder is publicly available on HuggingFace.

  • 3 authors
·
Nov 8, 2022

Natural Attack for Pre-trained Models of Code

Pre-trained models of code have achieved success in many important software engineering tasks. However, these powerful models are vulnerable to adversarial attacks that slightly perturb model inputs to make a victim model produce wrong outputs. Current works mainly attack models of code with examples that preserve operational program semantics but ignore a fundamental requirement for adversarial example generation: perturbations should be natural to human judges, which we refer to as naturalness requirement. In this paper, we propose ALERT (nAturaLnEss AwaRe ATtack), a black-box attack that adversarially transforms inputs to make victim models produce wrong outputs. Different from prior works, this paper considers the natural semantic of generated examples at the same time as preserving the operational semantic of original inputs. Our user study demonstrates that human developers consistently consider that adversarial examples generated by ALERT are more natural than those generated by the state-of-the-art work by Zhang et al. that ignores the naturalness requirement. On attacking CodeBERT, our approach can achieve attack success rates of 53.62%, 27.79%, and 35.78% across three downstream tasks: vulnerability prediction, clone detection and code authorship attribution. On GraphCodeBERT, our approach can achieve average success rates of 76.95%, 7.96% and 61.47% on the three tasks. The above outperforms the baseline by 14.07% and 18.56% on the two pre-trained models on average. Finally, we investigated the value of the generated adversarial examples to harden victim models through an adversarial fine-tuning procedure and demonstrated the accuracy of CodeBERT and GraphCodeBERT against ALERT-generated adversarial examples increased by 87.59% and 92.32%, respectively.

  • 4 authors
·
Jan 21, 2022

Structured access: an emerging paradigm for safe AI deployment

Structured access is an emerging paradigm for the safe deployment of artificial intelligence (AI). Instead of openly disseminating AI systems, developers facilitate controlled, arm's length interactions with their AI systems. The aim is to prevent dangerous AI capabilities from being widely accessible, whilst preserving access to AI capabilities that can be used safely. The developer must both restrict how the AI system can be used, and prevent the user from circumventing these restrictions through modification or reverse engineering of the AI system. Structured access is most effective when implemented through cloud-based AI services, rather than disseminating AI software that runs locally on users' hardware. Cloud-based interfaces provide the AI developer greater scope for controlling how the AI system is used, and for protecting against unauthorized modifications to the system's design. This chapter expands the discussion of "publication norms" in the AI community, which to date has focused on the question of how the informational content of AI research projects should be disseminated (e.g., code and models). Although this is an important question, there are limits to what can be achieved through the control of information flows. Structured access views AI software not only as information that can be shared but also as a tool with which users can have arm's length interactions. There are early examples of structured access being practiced by AI developers, but there is much room for further development, both in the functionality of cloud-based interfaces and in the wider institutional framework.

  • 1 authors
·
Jan 13, 2022