Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRoCoIns: Enhancing Robustness of Large Language Models through Code-Style Instructions
Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However, recent studies have raised concerns about the robustness of LLMs when prompted with instructions combining textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose in-context demonstrations using both clean and adversarial samples (adversarial context method) to further boost the robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms prompting LLMs with natural language instructions. For example, with gpt-3.5-turbo, our method achieves an improvement of 5.68\% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).
Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search
In code search, the Generation-Augmented Retrieval (GAR) framework, which generates exemplar code snippets to augment queries, has emerged as a promising strategy to address the principal challenge of modality misalignment between code snippets and natural language queries, particularly with the demonstrated code generation capabilities of Large Language Models (LLMs). Nevertheless, our preliminary investigations indicate that the improvements conferred by such an LLM-augmented framework are somewhat constrained. This limitation could potentially be ascribed to the fact that the generated codes, albeit functionally accurate, frequently display a pronounced stylistic deviation from the ground truth code in the codebase. In this paper, we extend the foundational GAR framework and propose a simple yet effective method that additionally Rewrites the Code (ReCo) within the codebase for style normalization. Experimental results demonstrate that ReCo significantly boosts retrieval accuracy across sparse (up to 35.7%), zero-shot dense (up to 27.6%), and fine-tuned dense (up to 23.6%) retrieval settings in diverse search scenarios. To further elucidate the advantages of ReCo and stimulate research in code style normalization, we introduce Code Style Similarity, the first metric tailored to quantify stylistic similarities in code. Notably, our empirical findings reveal the inadequacy of existing metrics in capturing stylistic nuances.
Exploring Data Augmentation for Code Generation Tasks
Advances in natural language processing, such as transfer learning from pre-trained language models, have impacted how models are trained for programming language tasks too. Previous research primarily explored code pre-training and expanded it through multi-modality and multi-tasking, yet the data for downstream tasks remain modest in size. Focusing on data utilization for downstream tasks, we propose and adapt augmentation methods that yield consistent improvements in code translation and summarization by up to 6.9% and 7.5% respectively. Further analysis suggests that our methods work orthogonally and show benefits in output code style and numeric consistency. We also discuss test data imperfections.
CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors
Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning ability on many NLP tasks. A common practice is to recast the task into a text-to-text format such that generative LLMs of natural language (NL-LLMs) like GPT-3 can be prompted to solve it. However, it is nontrivial to perform information extraction (IE) tasks with NL-LLMs since the output of the IE task is usually structured and therefore is hard to be converted into plain text. In this paper, we propose to recast the structured output in the form of code instead of natural language and utilize generative LLMs of code (Code-LLMs) such as Codex to perform IE tasks, in particular, named entity recognition and relation extraction. In contrast to NL-LLMs, we show that Code-LLMs can be well-aligned with these IE tasks by designing code-style prompts and formulating these IE tasks as code generation tasks. Experiment results on seven benchmarks show that our method consistently outperforms fine-tuning moderate-size pre-trained models specially designed for IE tasks (e.g., UIE) and prompting NL-LLMs under few-shot settings. We further conduct a series of in-depth analyses to demonstrate the merits of leveraging Code-LLMs for IE tasks.
Enhancing High-Quality Code Generation in Large Language Models with Comparative Prefix-Tuning
Large Language Models (LLMs) have been widely adopted in commercial code completion engines, significantly enhancing coding efficiency and productivity. However, LLMs may generate code with quality issues that violate coding standards and best practices, such as poor code style and maintainability, even when the code is functionally correct. This necessitates additional effort from developers to improve the code, potentially negating the efficiency gains provided by LLMs. To address this problem, we propose a novel comparative prefix-tuning method for controllable high-quality code generation. Our method introduces a single, property-specific prefix that is prepended to the activations of the LLM, serving as a lightweight alternative to fine-tuning. Unlike existing methods that require training multiple prefixes, our approach trains only one prefix and leverages pairs of high-quality and low-quality code samples, introducing a sequence-level ranking loss to guide the model's training. This comparative approach enables the model to better understand the differences between high-quality and low-quality code, focusing on aspects that impact code quality. Additionally, we design a data construction pipeline to collect and annotate pairs of high-quality and low-quality code, facilitating effective training. Extensive experiments on the Code Llama 7B model demonstrate that our method improves code quality by over 100% in certain task categories, while maintaining functional correctness. We also conduct ablation studies and generalization experiments, confirming the effectiveness of our method's components and its strong generalization capability.
KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction
In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over 30,000 types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around 1.5B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by 49.8% F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to 12.5% and 21.9%, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to 7.5% under the supervised setting.
AdaPlanner: Adaptive Planning from Feedback with Language Models
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks. However, most existing methods either take actions greedily without planning or rely on static plans that are not adaptable to environmental feedback. Consequently, the sequential decision-making performance of LLM agents degenerates with problem complexity and plan horizons increase. We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback. In AdaPlanner, the LLM agent adaptively refines its plan from feedback with both in-plan and out-of-plan refinement strategies. To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities. Furthermore, we propose a skill discovery mechanism that leverages successful plans as few-shot exemplars, enabling the agent to plan and refine with fewer task demonstrations. Our experiments in the ALFWorld and MiniWoB++ environments demonstrate that AdaPlanner outperforms state-of-the-art baselines by 3.73% and 4.11% while utilizing 2x and 600x fewer samples, respectively.
Directional Diffusion-Style Code Editing Pre-training
Code pre-trained models have shown promising effectiveness in various software engineering tasks. Among these tasks, many tasks are related to software evolution and/or code editing. However, existing code pre-trained models often overlook the real-world code editing data and the evolutionary nature of the editing process. In this paper, to simulate the step-by-step code editing process of human developers, we propose DivoT5, a pre-trained model based on directional diffusion at the data level. In DivoT5, we adopt two categories of pre-training tasks. The first category is mask and denoising tasks augmented with a diffusion direction representing code evolution. That is, we first apply a noising process to the code snippets before evolution, and then ask the pre-training process to restore the snippets with noise into the code snippets after evolution. The second category is tasks aiming to reinforce the evolutionary direction. That is, we first generate various intermediate versions for each pair of snippets before and after evolution, and then ask the pre-training process to transform the intermediate versions into the snippet after evolution for each pair. We evaluate DivoT5 for two code-editing scenarios and one non-editing scenario using five downstream tasks. Given each downstream task, we fine-tune the pre-trained DivoT5 to evaluate its effectiveness. Our experimental results show that DivoT5 achieves state-of-the-art (SOTA) performance on most tasks in comparison to models of the same scale (220M), large scale (770M) models in fine-tuning, and billion-scale (6.7B, 8B, ChatGPT) models in few-shot settings. For one code-editing task (i.e., automated code review), DivoT5 pre-trained on top of CodeT5-small (60M) can even outperform CodeT5-base (220M) and other pre-trained models with 220M parameters except for DivoT5 pre-trained on top of CodeT5-base (220M).
A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
Lyra: A Benchmark for Turducken-Style Code Generation
Recently, neural techniques have been used to generate source code automatically. While promising for declarative languages, these approaches achieve much poorer performance on datasets for imperative languages. Since a declarative language is typically embedded in an imperative language (i.e., the turducken-style programming) in real-world software development, the promising results on declarative languages can hardly lead to significant reduction of manual software development efforts. In this paper, we define a new code generation task: given a natural language comment, this task aims to generate a program in a base imperative language with an embedded declarative language. To our knowledge, this is the first turducken-style code generation task. For this task, we present Lyra: a dataset in Python with embedded SQL. This dataset contains 2,000 carefully annotated database manipulation programs from real-world projects. Each program is paired with both a Chinese comment and an English comment. In our experiment, we adopted Transformer, BERT-style, and GPT-style models as baselines. In the best setting, the generation performance of GPT-style models is better than others, where the AST exact matching accuracy is 24% and 25.5% when using Chinese and English comments, respectively. Therefore, we believe that Lyra provides a new challenge for code generation. Yet, overcoming this challenge may significantly boost the applicability of code generation techniques for real-world software development.
StyleTTS-ZS: Efficient High-Quality Zero-Shot Text-to-Speech Synthesis with Distilled Time-Varying Style Diffusion
The rapid development of large-scale text-to-speech (TTS) models has led to significant advancements in modeling diverse speaker prosody and voices. However, these models often face issues such as slow inference speeds, reliance on complex pre-trained neural codec representations, and difficulties in achieving naturalness and high similarity to reference speakers. To address these challenges, this work introduces StyleTTS-ZS, an efficient zero-shot TTS model that leverages distilled time-varying style diffusion to capture diverse speaker identities and prosodies. We propose a novel approach that represents human speech using input text and fixed-length time-varying discrete style codes to capture diverse prosodic variations, trained adversarially with multi-modal discriminators. A diffusion model is then built to sample this time-varying style code for efficient latent diffusion. Using classifier-free guidance, StyleTTS-ZS achieves high similarity to the reference speaker in the style diffusion process. Furthermore, to expedite sampling, the style diffusion model is distilled with perceptual loss using only 10k samples, maintaining speech quality and similarity while reducing inference speed by 90%. Our model surpasses previous state-of-the-art large-scale zero-shot TTS models in both naturalness and similarity, offering a 10-20 faster sampling speed, making it an attractive alternative for efficient large-scale zero-shot TTS systems. The audio demo, code and models are available at https://styletts-zs.github.io/.
PAC Prediction Sets for Large Language Models of Code
Prediction sets have recently been shown to be a promising strategy for quantifying the uncertainty of deep neural networks in a way that provides theoretical guarantees. However, existing techniques have largely targeted settings where the space of labels is simple, so prediction sets can be arbitrary subsets of labels. For structured prediction problems where the space of labels is exponential in size, even prediction sets containing a small fraction of all labels can be exponentially large. In the context of code generation, we propose a solution that considers a restricted set of prediction sets that can compactly be represented as partial programs, which are programs with portions replaced with holes. Given a trained code generation model, our algorithm leverages a programming language's abstract syntax tree to generate a set of programs such that the correct program is in the set with high-confidence. Valuable applications of our algorithm include a Codex-style code generator with holes in uncertain parts of the generated code, which provides a partial program with theoretical guarantees. We evaluate our approach on PICARD (a T5 model for SQL semantic parsing) and Codex (a GPT model for over a dozen programming languages, including Python), demonstrating that our approach generates compact PAC prediction sets. This is the first research contribution that generates PAC prediction sets for generative code models.
StyleTalk: One-shot Talking Head Generation with Controllable Speaking Styles
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
Generative Human Motion Stylization in Latent Space
Human motion stylization aims to revise the style of an input motion while keeping its content unaltered. Unlike existing works that operate directly in pose space, we leverage the latent space of pretrained autoencoders as a more expressive and robust representation for motion extraction and infusion. Building upon this, we present a novel generative model that produces diverse stylization results of a single motion (latent) code. During training, a motion code is decomposed into two coding components: a deterministic content code, and a probabilistic style code adhering to a prior distribution; then a generator massages the random combination of content and style codes to reconstruct the corresponding motion codes. Our approach is versatile, allowing the learning of probabilistic style space from either style labeled or unlabeled motions, providing notable flexibility in stylization as well. In inference, users can opt to stylize a motion using style cues from a reference motion or a label. Even in the absence of explicit style input, our model facilitates novel re-stylization by sampling from the unconditional style prior distribution. Experimental results show that our proposed stylization models, despite their lightweight design, outperform the state-of-the-art in style reenactment, content preservation, and generalization across various applications and settings. Project Page: https://murrol.github.io/GenMoStyle
GANs N' Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)
We show how to learn a map that takes a content code, derived from a face image, and a randomly chosen style code to an anime image. We derive an adversarial loss from our simple and effective definitions of style and content. This adversarial loss guarantees the map is diverse -- a very wide range of anime can be produced from a single content code. Under plausible assumptions, the map is not just diverse, but also correctly represents the probability of an anime, conditioned on an input face. In contrast, current multimodal generation procedures cannot capture the complex styles that appear in anime. Extensive quantitative experiments support the idea the map is correct. Extensive qualitative results show that the method can generate a much more diverse range of styles than SOTA comparisons. Finally, we show that our formalization of content and style allows us to perform video to video translation without ever training on videos.
Edge-guided Multi-domain RGB-to-TIR image Translation for Training Vision Tasks with Challenging Labels
The insufficient number of annotated thermal infrared (TIR) image datasets not only hinders TIR image-based deep learning networks to have comparable performances to that of RGB but it also limits the supervised learning of TIR image-based tasks with challenging labels. As a remedy, we propose a modified multidomain RGB to TIR image translation model focused on edge preservation to employ annotated RGB images with challenging labels. Our proposed method not only preserves key details in the original image but also leverages the optimal TIR style code to portray accurate TIR characteristics in the translated image, when applied on both synthetic and real world RGB images. Using our translation model, we have enabled the supervised learning of deep TIR image-based optical flow estimation and object detection that ameliorated in deep TIR optical flow estimation by reduction in end point error by 56.5\% on average and the best object detection mAP of 23.9\% respectively. Our code and supplementary materials are available at https://github.com/rpmsnu/sRGB-TIR.
AniFaceDrawing: Anime Portrait Exploration during Your Sketching
In this paper, we focus on how artificial intelligence (AI) can be used to assist users in the creation of anime portraits, that is, converting rough sketches into anime portraits during their sketching process. The input is a sequence of incomplete freehand sketches that are gradually refined stroke by stroke, while the output is a sequence of high-quality anime portraits that correspond to the input sketches as guidance. Although recent GANs can generate high quality images, it is a challenging problem to maintain the high quality of generated images from sketches with a low degree of completion due to ill-posed problems in conditional image generation. Even with the latest sketch-to-image (S2I) technology, it is still difficult to create high-quality images from incomplete rough sketches for anime portraits since anime style tend to be more abstract than in realistic style. To address this issue, we adopt a latent space exploration of StyleGAN with a two-stage training strategy. We consider the input strokes of a freehand sketch to correspond to edge information-related attributes in the latent structural code of StyleGAN, and term the matching between strokes and these attributes stroke-level disentanglement. In the first stage, we trained an image encoder with the pre-trained StyleGAN model as a teacher encoder. In the second stage, we simulated the drawing process of the generated images without any additional data (labels) and trained the sketch encoder for incomplete progressive sketches to generate high-quality portrait images with feature alignment to the disentangled representations in the teacher encoder. We verified the proposed progressive S2I system with both qualitative and quantitative evaluations and achieved high-quality anime portraits from incomplete progressive sketches. Our user study proved its effectiveness in art creation assistance for the anime style.
Exploring the Curious Case of Code Prompts
Recent work has shown that prompting language models with code-like representations of natural language leads to performance improvements on structured reasoning tasks. However, such tasks comprise only a small subset of all natural language tasks. In our work, we seek to answer whether or not code-prompting is the preferred way of interacting with language models in general. We compare code and text prompts across three popular GPT models (davinci, code-davinci-002, and text-davinci-002) on a broader selection of tasks (e.g., QA, sentiment, summarization) and find that with few exceptions, code prompts do not consistently outperform text prompts. Furthermore, we show that the style of code prompt has a large effect on performance for some but not all tasks and that fine-tuning on text instructions leads to better relative performance of code prompts.
Evaluating the Performance of Large Language Models in Competitive Programming: A Multi-Year, Multi-Grade Analysis
This study explores the performance of large language models (LLMs) in solving competitive programming problems from the Romanian Informatics Olympiad at the county level. Romania, a leading nation in computer science competitions, provides an ideal environment for evaluating LLM capabilities due to its rich history and stringent competition standards. We collected and analyzed a dataset comprising 304 challenges from 2002 to 2023, focusing on solutions written by LLMs in C++ and Python for these problems. Our primary goal is to understand why LLMs perform well or poorly on different tasks. We evaluated various models, including closed-source models like GPT-4 and open-weight models such as CodeLlama and RoMistral, using a standardized process involving multiple attempts and feedback rounds. The analysis revealed significant variations in LLM performance across different grades and problem types. Notably, GPT-4 showed strong performance, indicating its potential use as an educational tool for middle school students. We also observed differences in code quality and style across various LLMs
CoinMath: Harnessing the Power of Coding Instruction for Math LLMs
Large Language Models (LLMs) have shown strong performance in solving mathematical problems, with code-based solutions proving particularly effective. However, the best practice to leverage coding instruction data to enhance mathematical reasoning remains underexplored. This study investigates three key questions: (1) How do different coding styles of mathematical code-based rationales impact LLMs' learning performance? (2) Can general-domain coding instructions improve performance? (3) How does integrating textual rationales with code-based ones during training enhance mathematical reasoning abilities? Our findings reveal that code-based rationales with concise comments, descriptive naming, and hardcoded solutions are beneficial, while improvements from general-domain coding instructions and textual rationales are relatively minor. Based on these insights, we propose CoinMath, a learning strategy designed to enhance mathematical reasoning by diversifying the coding styles of code-based rationales. CoinMath generates a variety of code-based rationales incorporating concise comments, descriptive naming conventions, and hardcoded solutions. Experimental results demonstrate that CoinMath significantly outperforms its baseline model, MAmmoTH, one of the SOTA math LLMs.
Substance Beats Style: Why Beginning Students Fail to Code with LLMs
Although LLMs are increasing the productivity of professional programmers, existing work shows that beginners struggle to prompt LLMs to solve text-to-code tasks. Why is this the case? This paper explores two competing hypotheses about the cause of student-LLM miscommunication: (1) students simply lack the technical vocabulary needed to write good prompts, and (2) students do not understand the extent of information that LLMs need to solve code generation tasks. We study (1) with a causal intervention experiment on technical vocabulary and (2) by analyzing graphs that abstract how students edit prompts and the different failures that they encounter. We find that substance beats style: a poor grasp of technical vocabulary is merely correlated with prompt failure; that the information content of prompts predicts success; that students get stuck making trivial edits; and more. Our findings have implications for the use of LLMs in programming education, and for efforts to make computing more accessible with LLMs.
Searching by Code: a New SearchBySnippet Dataset and SnippeR Retrieval Model for Searching by Code Snippets
Code search is an important task that has seen many developments in recent years. However, previous attempts have mostly considered the problem of searching for code by a text query. We argue that using a code snippet (and possibly an associated traceback) as a query and looking for answers with bugfixing instructions and code samples is a natural use case that is not covered by existing approaches. Moreover, existing datasets use comments extracted from code rather than full-text descriptions as text, making them unsuitable for this use case. We present a new SearchBySnippet dataset implementing the search-by-code use case based on StackOverflow data; it turns out that in this setting, existing architectures fall short of the simplest BM25 baseline even after fine-tuning. We present a new single encoder model SnippeR that outperforms several strong baselines on the SearchBySnippet dataset with a result of 0.451 Recall@10; we propose the SearchBySnippet dataset and SnippeR as a new important benchmark for code search evaluation.
Stylecodes: Encoding Stylistic Information For Image Generation
Diffusion models excel in image generation, but controlling them remains a challenge. We focus on the problem of style-conditioned image generation. Although example images work, they are cumbersome: srefs (style-reference codes) from MidJourney solve this issue by expressing a specific image style in a short numeric code. These have seen widespread adoption throughout social media due to both their ease of sharing and the fact they allow using an image for style control, without having to post the source images themselves. However, users are not able to generate srefs from their own images, nor is the underlying training procedure public. We propose StyleCodes: an open-source and open-research style encoder architecture and training procedure to express image style as a 20-symbol base64 code. Our experiments show that our encoding results in minimal loss in quality compared to traditional image-to-style techniques.
Measuring Style Similarity in Diffusion Models
Generative models are now widely used by graphic designers and artists. Prior works have shown that these models remember and often replicate content from their training data during generation. Hence as their proliferation increases, it has become important to perform a database search to determine whether the properties of the image are attributable to specific training data, every time before a generated image is used for professional purposes. Existing tools for this purpose focus on retrieving images of similar semantic content. Meanwhile, many artists are concerned with style replication in text-to-image models. We present a framework for understanding and extracting style descriptors from images. Our framework comprises a new dataset curated using the insight that style is a subjective property of an image that captures complex yet meaningful interactions of factors including but not limited to colors, textures, shapes, etc. We also propose a method to extract style descriptors that can be used to attribute style of a generated image to the images used in the training dataset of a text-to-image model. We showcase promising results in various style retrieval tasks. We also quantitatively and qualitatively analyze style attribution and matching in the Stable Diffusion model. Code and artifacts are available at https://github.com/learn2phoenix/CSD.
Speaking Style Conversion in the Waveform Domain Using Discrete Self-Supervised Units
We introduce DISSC, a novel, lightweight method that converts the rhythm, pitch contour and timbre of a recording to a target speaker in a textless manner. Unlike DISSC, most voice conversion (VC) methods focus primarily on timbre, and ignore people's unique speaking style (prosody). The proposed approach uses a pretrained, self-supervised model for encoding speech to discrete units, which makes it simple, effective, and fast to train. All conversion modules are only trained on reconstruction like tasks, thus suitable for any-to-many VC with no paired data. We introduce a suite of quantitative and qualitative evaluation metrics for this setup, and empirically demonstrate that DISSC significantly outperforms the evaluated baselines. Code and samples are available at https://pages.cs.huji.ac.il/adiyoss-lab/dissc/.
Shoe Style-Invariant and Ground-Aware Learning for Dense Foot Contact Estimation
Foot contact plays a critical role in human interaction with the world, and thus exploring foot contact can advance our understanding of human movement and physical interaction. Despite its importance, existing methods often approximate foot contact using a zero-velocity constraint and focus on joint-level contact, failing to capture the detailed interaction between the foot and the world. Dense estimation of foot contact is crucial for accurately modeling this interaction, yet predicting dense foot contact from a single RGB image remains largely underexplored. There are two main challenges for learning dense foot contact estimation. First, shoes exhibit highly diverse appearances, making it difficult for models to generalize across different styles. Second, ground often has a monotonous appearance, making it difficult to extract informative features. To tackle these issues, we present a FEet COntact estimation (FECO) framework that learns dense foot contact with shoe style-invariant and ground-aware learning. To overcome the challenge of shoe appearance diversity, our approach incorporates shoe style adversarial training that enforces shoe style-invariant features for contact estimation. To effectively utilize ground information, we introduce a ground feature extractor that captures ground properties based on spatial context. As a result, our proposed method achieves robust foot contact estimation regardless of shoe appearance and effectively leverages ground information. Code will be released.
SPG: Style-Prompting Guidance for Style-Specific Content Creation
Although recent text-to-image (T2I) diffusion models excel at aligning generated images with textual prompts, controlling the visual style of the output remains a challenging task. In this work, we propose Style-Prompting Guidance (SPG), a novel sampling strategy for style-specific image generation. SPG constructs a style noise vector and leverages its directional deviation from unconditional noise to guide the diffusion process toward the target style distribution. By integrating SPG with Classifier-Free Guidance (CFG), our method achieves both semantic fidelity and style consistency. SPG is simple, robust, and compatible with controllable frameworks like ControlNet and IPAdapter, making it practical and widely applicable. Extensive experiments demonstrate the effectiveness and generality of our approach compared to state-of-the-art methods. Code is available at https://github.com/Rumbling281441/SPG.
Using Style Ambiguity Loss to Improve Aesthetics of Diffusion Models
Teaching text-to-image models to be creative involves using style ambiguity loss. In this work, we explore using the style ambiguity training objective, used to approximate creativity, on a diffusion model. We then experiment with forms of style ambiguity loss that do not require training a classifier or a labeled dataset, and find that the models trained with style ambiguity loss can generate better images than the baseline diffusion models and GANs. Code is available at https://github.com/jamesBaker361/clipcreate.
Deformable Style Transfer
Both geometry and texture are fundamental aspects of visual style. Existing style transfer methods, however, primarily focus on texture, almost entirely ignoring geometry. We propose deformable style transfer (DST), an optimization-based approach that jointly stylizes the texture and geometry of a content image to better match a style image. Unlike previous geometry-aware stylization methods, our approach is neither restricted to a particular domain (such as human faces), nor does it require training sets of matching style/content pairs. We demonstrate our method on a diverse set of content and style images including portraits, animals, objects, scenes, and paintings. Code has been made publicly available at https://github.com/sunniesuhyoung/DST.
Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy
Time-lapse fluorescent microscopy (TLFM) combined with predictive mathematical modelling is a powerful tool to study the inherently dynamic processes of life on the single-cell level. Such experiments are costly, complex and labour intensive. A complimentary approach and a step towards in silico experimentation, is to synthesise the imagery itself. Here, we propose Multi-StyleGAN as a descriptive approach to simulate time-lapse fluorescence microscopy imagery of living cells, based on a past experiment. This novel generative adversarial network synthesises a multi-domain sequence of consecutive timesteps. We showcase Multi-StyleGAN on imagery of multiple live yeast cells in microstructured environments and train on a dataset recorded in our laboratory. The simulation captures underlying biophysical factors and time dependencies, such as cell morphology, growth, physical interactions, as well as the intensity of a fluorescent reporter protein. An immediate application is to generate additional training and validation data for feature extraction algorithms or to aid and expedite development of advanced experimental techniques such as online monitoring or control of cells. Code and dataset is available at https://git.rwth-aachen.de/bcs/projects/tp/multi-stylegan.
USO: Unified Style and Subject-Driven Generation via Disentangled and Reward Learning
Existing literature typically treats style-driven and subject-driven generation as two disjoint tasks: the former prioritizes stylistic similarity, whereas the latter insists on subject consistency, resulting in an apparent antagonism. We argue that both objectives can be unified under a single framework because they ultimately concern the disentanglement and re-composition of content and style, a long-standing theme in style-driven research. To this end, we present USO, a Unified Style-Subject Optimized customization model. First, we construct a large-scale triplet dataset consisting of content images, style images, and their corresponding stylized content images. Second, we introduce a disentangled learning scheme that simultaneously aligns style features and disentangles content from style through two complementary objectives, style-alignment training and content-style disentanglement training. Third, we incorporate a style reward-learning paradigm denoted as SRL to further enhance the model's performance. Finally, we release USO-Bench, the first benchmark that jointly evaluates style similarity and subject fidelity across multiple metrics. Extensive experiments demonstrate that USO achieves state-of-the-art performance among open-source models along both dimensions of subject consistency and style similarity. Code and model: https://github.com/bytedance/USO
Optimization-Free Style Transfer for 3D Gaussian Splats
The task of style transfer for 3D Gaussian splats has been explored in many previous works, but these require reconstructing or fine-tuning the splat while incorporating style information or optimizing a feature extraction network on the splat representation. We propose a reconstruction- and optimization-free approach to stylizing 3D Gaussian splats. This is done by generating a graph structure across the implicit surface of the splat representation. A feed-forward, surface-based stylization method is then used and interpolated back to the individual splats in the scene. This allows for any style image and 3D Gaussian splat to be used without any additional training or optimization. This also allows for fast stylization of splats, achieving speeds under 2 minutes even on consumer-grade hardware. We demonstrate the quality results this approach achieves and compare to other 3D Gaussian splat style transfer methods. Code is publicly available at https://github.com/davidmhart/FastSplatStyler.
SOAP: Style-Omniscient Animatable Portraits
Creating animatable 3D avatars from a single image remains challenging due to style limitations (realistic, cartoon, anime) and difficulties in handling accessories or hairstyles. While 3D diffusion models advance single-view reconstruction for general objects, outputs often lack animation controls or suffer from artifacts because of the domain gap. We propose SOAP, a style-omniscient framework to generate rigged, topology-consistent avatars from any portrait. Our method leverages a multiview diffusion model trained on 24K 3D heads with multiple styles and an adaptive optimization pipeline to deform the FLAME mesh while maintaining topology and rigging via differentiable rendering. The resulting textured avatars support FACS-based animation, integrate with eyeballs and teeth, and preserve details like braided hair or accessories. Extensive experiments demonstrate the superiority of our method over state-of-the-art techniques for both single-view head modeling and diffusion-based generation of Image-to-3D. Our code and data are publicly available for research purposes at https://github.com/TingtingLiao/soap.
StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized Tokenizer of a Large-Scale Generative Model
Despite the progress made in the style transfer task, most previous work focus on transferring only relatively simple features like color or texture, while missing more abstract concepts such as overall art expression or painter-specific traits. However, these abstract semantics can be captured by models like DALL-E or CLIP, which have been trained using huge datasets of images and textual documents. In this paper, we propose StylerDALLE, a style transfer method that exploits both of these models and uses natural language to describe abstract art styles. Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation, i.e., from input content image to output stylized image, in the discrete latent space of a large-scale pretrained vector-quantized tokenizer. To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision that ensures stylization and content preservation simultaneously. Experimental results demonstrate the superiority of our method, which can effectively transfer art styles using language instructions at different granularities. Code is available at https://github.com/zipengxuc/StylerDALLE.
Inversion-Based Style Transfer with Diffusion Models
The artistic style within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes including semantic elements, object shapes, etc. Previous arbitrary example-guided artistic image generation methods often fail to control shape changes or convey elements. The pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality, but it often requires extensive textual descriptions to accurately portray attributes of a particular painting. We believe that the uniqueness of an artwork lies precisely in the fact that it cannot be adequately explained with normal language. Our key idea is to learn artistic style directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we assume style as a learnable textual description of a painting. We propose an inversion-based style transfer method (InST), which can efficiently and accurately learn the key information of an image, thus capturing and transferring the artistic style of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Code and models are available at https://github.com/zyxElsa/InST.
Improving Masked Style Transfer using Blended Partial Convolution
Artistic style transfer has long been possible with the advancements of convolution- and transformer-based neural networks. Most algorithms apply the artistic style transfer to the whole image, but individual users may only need to apply a style transfer to a specific region in the image. The standard practice is to simply mask the image after the stylization. This work shows that this approach tends to improperly capture the style features in the region of interest. We propose a partial-convolution-based style transfer network that accurately applies the style features exclusively to the region of interest. Additionally, we present network-internal blending techniques that account for imperfections in the region selection. We show that this visually and quantitatively improves stylization using examples from the SA-1B dataset. Code is publicly available at https://github.com/davidmhart/StyleTransferMasked.
Content-Style Decoupling for Unsupervised Makeup Transfer without Generating Pseudo Ground Truth
The absence of real targets to guide the model training is one of the main problems with the makeup transfer task. Most existing methods tackle this problem by synthesizing pseudo ground truths (PGTs). However, the generated PGTs are often sub-optimal and their imprecision will eventually lead to performance degradation. To alleviate this issue, in this paper, we propose a novel Content-Style Decoupled Makeup Transfer (CSD-MT) method, which works in a purely unsupervised manner and thus eliminates the negative effects of generating PGTs. Specifically, based on the frequency characteristics analysis, we assume that the low-frequency (LF) component of a face image is more associated with its makeup style information, while the high-frequency (HF) component is more related to its content details. This assumption allows CSD-MT to decouple the content and makeup style information in each face image through the frequency decomposition. After that, CSD-MT realizes makeup transfer by maximizing the consistency of these two types of information between the transferred result and input images, respectively. Two newly designed loss functions are also introduced to further improve the transfer performance. Extensive quantitative and qualitative analyses show the effectiveness of our CSD-MT method. Our code is available at https://github.com/Snowfallingplum/CSD-MT.
Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style Transfer
Large-scale text-to-video diffusion models have demonstrated an exceptional ability to synthesize diverse videos. However, due to the lack of extensive text-to-video datasets and the necessary computational resources for training, directly applying these models for video stylization remains difficult. Also, given that the noise addition process on the input content is random and destructive, fulfilling the style transfer task's content preservation criteria is challenging. This paper proposes a zero-shot video stylization method named Style-A-Video, which utilizes a generative pre-trained transformer with an image latent diffusion model to achieve a concise text-controlled video stylization. We improve the guidance condition in the denoising process, establishing a balance between artistic expression and structure preservation. Furthermore, to decrease inter-frame flicker and avoid the formation of additional artifacts, we employ a sampling optimization and a temporal consistency module. Extensive experiments show that we can attain superior content preservation and stylistic performance while incurring less consumption than previous solutions. Code will be available at https://github.com/haha-lisa/Style-A-Video.
Adversarial Style Augmentation for Domain Generalization
It is well-known that the performance of well-trained deep neural networks may degrade significantly when they are applied to data with even slightly shifted distributions. Recent studies have shown that introducing certain perturbation on feature statistics (\eg, mean and standard deviation) during training can enhance the cross-domain generalization ability. Existing methods typically conduct such perturbation by utilizing the feature statistics within a mini-batch, limiting their representation capability. Inspired by the domain generalization objective, we introduce a novel Adversarial Style Augmentation (ASA) method, which explores broader style spaces by generating more effective statistics perturbation via adversarial training. Specifically, we first search for the most sensitive direction and intensity for statistics perturbation by maximizing the task loss. By updating the model against the adversarial statistics perturbation during training, we allow the model to explore the worst-case domain and hence improve its generalization performance. To facilitate the application of ASA, we design a simple yet effective module, namely AdvStyle, which instantiates the ASA method in a plug-and-play manner. We justify the efficacy of AdvStyle on tasks of cross-domain classification and instance retrieval. It achieves higher mean accuracy and lower performance fluctuation. Especially, our method significantly outperforms its competitors on the PACS dataset under the single source generalization setting, \eg, boosting the classification accuracy from 61.2\% to 67.1\% with a ResNet50 backbone. Our code will be available at https://github.com/YBZh/AdvStyle.
Photorealistic Style Transfer via Wavelet Transforms
Recent style transfer models have provided promising artistic results. However, given a photograph as a reference style, existing methods are limited by spatial distortions or unrealistic artifacts, which should not happen in real photographs. We introduce a theoretically sound correction to the network architecture that remarkably enhances photorealism and faithfully transfers the style. The key ingredient of our method is wavelet transforms that naturally fits in deep networks. We propose a wavelet corrected transfer based on whitening and coloring transforms (WCT^2) that allows features to preserve their structural information and statistical properties of VGG feature space during stylization. This is the first and the only end-to-end model that can stylize a 1024times1024 resolution image in 4.7 seconds, giving a pleasing and photorealistic quality without any post-processing. Last but not least, our model provides a stable video stylization without temporal constraints. Our code, generated images, and pre-trained models are all available at https://github.com/ClovaAI/WCT2.
StyleRes: Transforming the Residuals for Real Image Editing with StyleGAN
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
QC-StyleGAN -- Quality Controllable Image Generation and Manipulation
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation. The code is available at https://github.com/VinAIResearch/QC-StyleGAN.
SDF-StyleGAN: Implicit SDF-Based StyleGAN for 3D Shape Generation
We present a StyleGAN2-based deep learning approach for 3D shape generation, called SDF-StyleGAN, with the aim of reducing visual and geometric dissimilarity between generated shapes and a shape collection. We extend StyleGAN2 to 3D generation and utilize the implicit signed distance function (SDF) as the 3D shape representation, and introduce two novel global and local shape discriminators that distinguish real and fake SDF values and gradients to significantly improve shape geometry and visual quality. We further complement the evaluation metrics of 3D generative models with the shading-image-based Fr\'echet inception distance (FID) scores to better assess visual quality and shape distribution of the generated shapes. Experiments on shape generation demonstrate the superior performance of SDF-StyleGAN over the state-of-the-art. We further demonstrate the efficacy of SDF-StyleGAN in various tasks based on GAN inversion, including shape reconstruction, shape completion from partial point clouds, single-view image-based shape generation, and shape style editing. Extensive ablation studies justify the efficacy of our framework design. Our code and trained models are available at https://github.com/Zhengxinyang/SDF-StyleGAN.
Music Style Transfer with Time-Varying Inversion of Diffusion Models
With the development of diffusion models, text-guided image style transfer has demonstrated high-quality controllable synthesis results. However, the utilization of text for diverse music style transfer poses significant challenges, primarily due to the limited availability of matched audio-text datasets. Music, being an abstract and complex art form, exhibits variations and intricacies even within the same genre, thereby making accurate textual descriptions challenging. This paper presents a music style transfer approach that effectively captures musical attributes using minimal data. We introduce a novel time-varying textual inversion module to precisely capture mel-spectrogram features at different levels. During inference, we propose a bias-reduced stylization technique to obtain stable results. Experimental results demonstrate that our method can transfer the style of specific instruments, as well as incorporate natural sounds to compose melodies. Samples and source code are available at https://lsfhuihuiff.github.io/MusicTI/.
AStF: Motion Style Transfer via Adaptive Statistics Fusor
Human motion style transfer allows characters to appear less rigidity and more realism with specific style. Traditional arbitrary image style transfer typically process mean and variance which is proved effective. Meanwhile, similar methods have been adapted for motion style transfer. However, due to the fundamental differences between images and motion, relying on mean and variance is insufficient to fully capture the complex dynamic patterns and spatiotemporal coherence properties of motion data. Building upon this, our key insight is to bring two more coefficient, skewness and kurtosis, into the analysis of motion style. Specifically, we propose a novel Adaptive Statistics Fusor (AStF) which consists of Style Disentanglement Module (SDM) and High-Order Multi-Statistics Attention (HOS-Attn). We trained our AStF in conjunction with a Motion Consistency Regularization (MCR) discriminator. Experimental results show that, by providing a more comprehensive model of the spatiotemporal statistical patterns inherent in dynamic styles, our proposed AStF shows proficiency superiority in motion style transfers over state-of-the-arts. Our code and model are available at https://github.com/CHMimilanlan/AStF.
Visual Style Prompt Learning Using Diffusion Models for Blind Face Restoration
Blind face restoration aims to recover high-quality facial images from various unidentified sources of degradation, posing significant challenges due to the minimal information retrievable from the degraded images. Prior knowledge-based methods, leveraging geometric priors and facial features, have led to advancements in face restoration but often fall short of capturing fine details. To address this, we introduce a visual style prompt learning framework that utilizes diffusion probabilistic models to explicitly generate visual prompts within the latent space of pre-trained generative models. These prompts are designed to guide the restoration process. To fully utilize the visual prompts and enhance the extraction of informative and rich patterns, we introduce a style-modulated aggregation transformation layer. Extensive experiments and applications demonstrate the superiority of our method in achieving high-quality blind face restoration. The source code is available at https://github.com/LonglongaaaGo/VSPBFR{https://github.com/LonglongaaaGo/VSPBFR}.
StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation
Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We present an approach for generating styled drawings for a given text description where a user can specify a desired drawing style using a sample image. Inspired by a theory in art that style and content are generally inseparable during the creative process, we propose a coupled approach, known here as StyleCLIPDraw, whereby the drawing is generated by optimizing for style and content simultaneously throughout the process as opposed to applying style transfer after creating content in a sequence. Based on human evaluation, the styles of images generated by StyleCLIPDraw are strongly preferred to those by the sequential approach. Although the quality of content generation degrades for certain styles, overall considering both content and style, StyleCLIPDraw is found far more preferred, indicating the importance of style, look, and feel of machine generated images to people as well as indicating that style is coupled in the drawing process itself. Our code (https://github.com/pschaldenbrand/StyleCLIPDraw), a demonstration (https://replicate.com/pschaldenbrand/style-clip-draw), and style evaluation data (https://www.kaggle.com/pittsburghskeet/drawings-with-style-evaluation-styleclipdraw) are publicly available.
StyDeco: Unsupervised Style Transfer with Distilling Priors and Semantic Decoupling
Diffusion models have emerged as the dominant paradigm for style transfer, but their text-driven mechanism is hindered by a core limitation: it treats textual descriptions as uniform, monolithic guidance. This limitation overlooks the semantic gap between the non-spatial nature of textual descriptions and the spatially-aware attributes of visual style, often leading to the loss of semantic structure and fine-grained details during stylization. In this paper, we propose StyDeco, an unsupervised framework that resolves this limitation by learning text representations specifically tailored for the style transfer task. Our framework first employs Prior-Guided Data Distillation (PGD), a strategy designed to distill stylistic knowledge without human supervision. It leverages a powerful frozen generative model to automatically synthesize pseudo-paired data. Subsequently, we introduce Contrastive Semantic Decoupling (CSD), a task-specific objective that adapts a text encoder using domain-specific weights. CSD performs a two-class clustering in the semantic space, encouraging source and target representations to form distinct clusters. Extensive experiments on three classic benchmarks demonstrate that our framework outperforms several existing approaches in both stylistic fidelity and structural preservation, highlighting its effectiveness in style transfer with semantic preservation. In addition, our framework supports a unique de-stylization process, further demonstrating its extensibility. Our code is vailable at https://github.com/QuanjianSong/StyDeco.
OSSA: Unsupervised One-Shot Style Adaptation
Despite their success in various vision tasks, deep neural network architectures often underperform in out-of-distribution scenarios due to the difference between training and target domain style. To address this limitation, we introduce One-Shot Style Adaptation (OSSA), a novel unsupervised domain adaptation method for object detection that utilizes a single, unlabeled target image to approximate the target domain style. Specifically, OSSA generates diverse target styles by perturbing the style statistics derived from a single target image and then applies these styles to a labeled source dataset at the feature level using Adaptive Instance Normalization (AdaIN). Extensive experiments show that OSSA establishes a new state-of-the-art among one-shot domain adaptation methods by a significant margin, and in some cases, even outperforms strong baselines that use thousands of unlabeled target images. By applying OSSA in various scenarios, including weather, simulated-to-real (sim2real), and visual-to-thermal adaptations, our study explores the overarching significance of the style gap in these contexts. OSSA's simplicity and efficiency allow easy integration into existing frameworks, providing a potentially viable solution for practical applications with limited data availability. Code is available at https://github.com/RobinGerster7/OSSA
StyleTokenizer: Defining Image Style by a Single Instance for Controlling Diffusion Models
Despite the burst of innovative methods for controlling the diffusion process, effectively controlling image styles in text-to-image generation remains a challenging task. Many adapter-based methods impose image representation conditions on the denoising process to accomplish image control. However these conditions are not aligned with the word embedding space, leading to interference between image and text control conditions and the potential loss of semantic information from the text prompt. Addressing this issue involves two key challenges. Firstly, how to inject the style representation without compromising the effectiveness of text representation in control. Secondly, how to obtain the accurate style representation from a single reference image. To tackle these challenges, we introduce StyleTokenizer, a zero-shot style control image generation method that aligns style representation with text representation using a style tokenizer. This alignment effectively minimizes the impact on the effectiveness of text prompts. Furthermore, we collect a well-labeled style dataset named Style30k to train a style feature extractor capable of accurately representing style while excluding other content information. Experimental results demonstrate that our method fully grasps the style characteristics of the reference image, generating appealing images that are consistent with both the target image style and text prompt. The code and dataset are available at https://github.com/alipay/style-tokenizer.
ViD-GPT: Introducing GPT-style Autoregressive Generation in Video Diffusion Models
With the advance of diffusion models, today's video generation has achieved impressive quality. But generating temporal consistent long videos is still challenging. A majority of video diffusion models (VDMs) generate long videos in an autoregressive manner, i.e., generating subsequent clips conditioned on last frames of previous clip. However, existing approaches all involve bidirectional computations, which restricts the receptive context of each autoregression step, and results in the model lacking long-term dependencies. Inspired from the huge success of large language models (LLMs) and following GPT (generative pre-trained transformer), we bring causal (i.e., unidirectional) generation into VDMs, and use past frames as prompt to generate future frames. For Causal Generation, we introduce causal temporal attention into VDM, which forces each generated frame to depend on its previous frames. For Frame as Prompt, we inject the conditional frames by concatenating them with noisy frames (frames to be generated) along the temporal axis. Consequently, we present Video Diffusion GPT (ViD-GPT). Based on the two key designs, in each autoregression step, it is able to acquire long-term context from prompting frames concatenated by all previously generated frames. Additionally, we bring the kv-cache mechanism to VDMs, which eliminates the redundant computation from overlapped frames, significantly boosting the inference speed. Extensive experiments demonstrate that our ViD-GPT achieves state-of-the-art performance both quantitatively and qualitatively on long video generation. Code will be available at https://github.com/Dawn-LX/Causal-VideoGen.
Style-Extracting Diffusion Models for Semi-Supervised Histopathology Segmentation
Deep learning-based image generation has seen significant advancements with diffusion models, notably improving the quality of generated images. Despite these developments, generating images with unseen characteristics beneficial for downstream tasks has received limited attention. To bridge this gap, we propose Style-Extracting Diffusion Models, featuring two conditioning mechanisms. Specifically, we utilize 1) a style conditioning mechanism which allows to inject style information of previously unseen images during image generation and 2) a content conditioning which can be targeted to a downstream task, e.g., layout for segmentation. We introduce a trainable style encoder to extract style information from images, and an aggregation block that merges style information from multiple style inputs. This architecture enables the generation of images with unseen styles in a zero-shot manner, by leveraging styles from unseen images, resulting in more diverse generations. In this work, we use the image layout as target condition and first show the capability of our method on a natural image dataset as a proof-of-concept. We further demonstrate its versatility in histopathology, where we combine prior knowledge about tissue composition and unannotated data to create diverse synthetic images with known layouts. This allows us to generate additional synthetic data to train a segmentation network in a semi-supervised fashion. We verify the added value of the generated images by showing improved segmentation results and lower performance variability between patients when synthetic images are included during segmentation training. Our code will be made publicly available at [LINK].
S2WAT: Image Style Transfer via Hierarchical Vision Transformer using Strips Window Attention
Transformer's recent integration into style transfer leverages its proficiency in establishing long-range dependencies, albeit at the expense of attenuated local modeling. This paper introduces Strips Window Attention Transformer (S2WAT), a novel hierarchical vision transformer designed for style transfer. S2WAT employs attention computation in diverse window shapes to capture both short- and long-range dependencies. The merged dependencies utilize the "Attn Merge" strategy, which adaptively determines spatial weights based on their relevance to the target. Extensive experiments on representative datasets show the proposed method's effectiveness compared to state-of-the-art (SOTA) transformer-based and other approaches. The code and pre-trained models are available at https://github.com/AlienZhang1996/S2WAT.
Fine-grained style control in Transformer-based Text-to-speech Synthesis
In this paper, we present a novel architecture to realize fine-grained style control on the transformer-based text-to-speech synthesis (TransformerTTS). Specifically, we model the speaking style by extracting a time sequence of local style tokens (LST) from the reference speech. The existing content encoder in TransformerTTS is then replaced by our designed cross-attention blocks for fusion and alignment between content and style. As the fusion is performed along with the skip connection, our cross-attention block provides a good inductive bias to gradually infuse the phoneme representation with a given style. Additionally, we prevent the style embedding from encoding linguistic content by randomly truncating LST during training and using wav2vec 2.0 features. Experiments show that with fine-grained style control, our system performs better in terms of naturalness, intelligibility, and style transferability. Our code and samples are publicly available.
Artist Style Transfer Via Quadratic Potential
In this paper we address the problem of artist style transfer where the painting style of a given artist is applied on a real world photograph. We train our neural networks in adversarial setting via recently introduced quadratic potential divergence for stable learning process. To further improve the quality of generated artist stylized images we also integrate some of the recently introduced deep learning techniques in our method. To our best knowledge this is the first attempt towards artist style transfer via quadratic potential divergence. We provide some stylized image samples in the supplementary material. The source code for experimentation was written in PyTorch and is available online in my GitHub repository.
Meta Networks for Neural Style Transfer
In this paper we propose a new method to get the specified network parameters through one time feed-forward propagation of the meta networks and explore the application to neural style transfer. Recent works on style transfer typically need to train image transformation networks for every new style, and the style is encoded in the network parameters by enormous iterations of stochastic gradient descent. To tackle these issues, we build a meta network which takes in the style image and produces a corresponding image transformations network directly. Compared with optimization-based methods for every style, our meta networks can handle an arbitrary new style within 19ms seconds on one modern GPU card. The fast image transformation network generated by our meta network is only 449KB, which is capable of real-time executing on a mobile device. We also investigate the manifold of the style transfer networks by operating the hidden features from meta networks. Experiments have well validated the effectiveness of our method. Code and trained models has been released https://github.com/FalongShen/styletransfer.
StyleMM: Stylized 3D Morphable Face Model via Text-Driven Aligned Image Translation
We introduce StyleMM, a novel framework that can construct a stylized 3D Morphable Model (3DMM) based on user-defined text descriptions specifying a target style. Building upon a pre-trained mesh deformation network and a texture generator for original 3DMM-based realistic human faces, our approach fine-tunes these models using stylized facial images generated via text-guided image-to-image (i2i) translation with a diffusion model, which serve as stylization targets for the rendered mesh. To prevent undesired changes in identity, facial alignment, or expressions during i2i translation, we introduce a stylization method that explicitly preserves the facial attributes of the source image. By maintaining these critical attributes during image stylization, the proposed approach ensures consistent 3D style transfer across the 3DMM parameter space through image-based training. Once trained, StyleMM enables feed-forward generation of stylized face meshes with explicit control over shape, expression, and texture parameters, producing meshes with consistent vertex connectivity and animatability. Quantitative and qualitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of identity-level facial diversity and stylization capability. The code and videos are available at [kwanyun.github.io/stylemm_page](kwanyun.github.io/stylemm_page).
When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for Personalized Image Generation
Text-to-image diffusion models have remarkably excelled in producing diverse, high-quality, and photo-realistic images. This advancement has spurred a growing interest in incorporating specific identities into generated content. Most current methods employ an inversion approach to embed a target visual concept into the text embedding space using a single reference image. However, the newly synthesized faces either closely resemble the reference image in terms of facial attributes, such as expression, or exhibit a reduced capacity for identity preservation. Text descriptions intended to guide the facial attributes of the synthesized face may fall short, owing to the intricate entanglement of identity information with identity-irrelevant facial attributes derived from the reference image. To address these issues, we present the novel use of the extended StyleGAN embedding space W_+, to achieve enhanced identity preservation and disentanglement for diffusion models. By aligning this semantically meaningful human face latent space with text-to-image diffusion models, we succeed in maintaining high fidelity in identity preservation, coupled with the capacity for semantic editing. Additionally, we propose new training objectives to balance the influences of both prompt and identity conditions, ensuring that the identity-irrelevant background remains unaffected during facial attribute modifications. Extensive experiments reveal that our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions in diverse settings. Our source code will be available at https://github.com/csxmli2016/w-plus-adapter.
StyleMC: Multi-Channel Based Fast Text-Guided Image Generation and Manipulation
Discovering meaningful directions in the latent space of GANs to manipulate semantic attributes typically requires large amounts of labeled data. Recent work aims to overcome this limitation by leveraging the power of Contrastive Language-Image Pre-training (CLIP), a joint text-image model. While promising, these methods require several hours of preprocessing or training to achieve the desired manipulations. In this paper, we present StyleMC, a fast and efficient method for text-driven image generation and manipulation. StyleMC uses a CLIP-based loss and an identity loss to manipulate images via a single text prompt without significantly affecting other attributes. Unlike prior work, StyleMC requires only a few seconds of training per text prompt to find stable global directions, does not require prompt engineering and can be used with any pre-trained StyleGAN2 model. We demonstrate the effectiveness of our method and compare it to state-of-the-art methods. Our code can be found at http://catlab-team.github.io/stylemc.
StyleSwin: Transformer-based GAN for High-resolution Image Generation
Despite the tantalizing success in a broad of vision tasks, transformers have not yet demonstrated on-par ability as ConvNets in high-resolution image generative modeling. In this paper, we seek to explore using pure transformers to build a generative adversarial network for high-resolution image synthesis. To this end, we believe that local attention is crucial to strike the balance between computational efficiency and modeling capacity. Hence, the proposed generator adopts Swin transformer in a style-based architecture. To achieve a larger receptive field, we propose double attention which simultaneously leverages the context of the local and the shifted windows, leading to improved generation quality. Moreover, we show that offering the knowledge of the absolute position that has been lost in window-based transformers greatly benefits the generation quality. The proposed StyleSwin is scalable to high resolutions, with both the coarse geometry and fine structures benefit from the strong expressivity of transformers. However, blocking artifacts occur during high-resolution synthesis because performing the local attention in a block-wise manner may break the spatial coherency. To solve this, we empirically investigate various solutions, among which we find that employing a wavelet discriminator to examine the spectral discrepancy effectively suppresses the artifacts. Extensive experiments show the superiority over prior transformer-based GANs, especially on high resolutions, e.g., 1024x1024. The StyleSwin, without complex training strategies, excels over StyleGAN on CelebA-HQ 1024, and achieves on-par performance on FFHQ-1024, proving the promise of using transformers for high-resolution image generation. The code and models will be available at https://github.com/microsoft/StyleSwin.
StyleGAN2 Distillation for Feed-forward Image Manipulation
StyleGAN2 is a state-of-the-art network in generating realistic images. Besides, it was explicitly trained to have disentangled directions in latent space, which allows efficient image manipulation by varying latent factors. Editing existing images requires embedding a given image into the latent space of StyleGAN2. Latent code optimization via backpropagation is commonly used for qualitative embedding of real world images, although it is prohibitively slow for many applications. We propose a way to distill a particular image manipulation of StyleGAN2 into image-to-image network trained in paired way. The resulting pipeline is an alternative to existing GANs, trained on unpaired data. We provide results of human faces' transformation: gender swap, aging/rejuvenation, style transfer and image morphing. We show that the quality of generation using our method is comparable to StyleGAN2 backpropagation and current state-of-the-art methods in these particular tasks.
Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
DiffusionPen: Towards Controlling the Style of Handwritten Text Generation
Handwritten Text Generation (HTG) conditioned on text and style is a challenging task due to the variability of inter-user characteristics and the unlimited combinations of characters that form new words unseen during training. Diffusion Models have recently shown promising results in HTG but still remain under-explored. We present DiffusionPen (DiffPen), a 5-shot style handwritten text generation approach based on Latent Diffusion Models. By utilizing a hybrid style extractor that combines metric learning and classification, our approach manages to capture both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples. Moreover, we explore several variation strategies of the data with multi-style mixtures and noisy embeddings, enhancing the robustness and diversity of the generated data. Extensive experiments using IAM offline handwriting database show that our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems. The code is available at: https://github.com/koninik/DiffusionPen.
ParaStyleTTS: Toward Efficient and Robust Paralinguistic Style Control for Expressive Text-to-Speech Generation
Controlling speaking style in text-to-speech (TTS) systems has become a growing focus in both academia and industry. While many existing approaches rely on reference audio to guide style generation, such methods are often impractical due to privacy concerns and limited accessibility. More recently, large language models (LLMs) have been used to control speaking style through natural language prompts; however, their high computational cost, lack of interpretability, and sensitivity to prompt phrasing limit their applicability in real-time and resource-constrained environments. In this work, we propose ParaStyleTTS, a lightweight and interpretable TTS framework that enables expressive style control from text prompts alone. ParaStyleTTS features a novel two-level style adaptation architecture that separates prosodic and paralinguistic speech style modeling. It allows fine-grained and robust control over factors such as emotion, gender, and age. Unlike LLM-based methods, ParaStyleTTS maintains consistent style realization across varied prompt formulations and is well-suited for real-world applications, including on-device and low-resource deployment. Experimental results show that ParaStyleTTS generates high-quality speech with performance comparable to state-of-the-art LLM-based systems while being 30x faster, using 8x fewer parameters, and requiring 2.5x less CUDA memory. Moreover, ParaStyleTTS exhibits superior robustness and controllability over paralinguistic speaking styles, providing a practical and efficient solution for style-controllable text-to-speech generation. Demo can be found at https://parastyletts.github.io/ParaStyleTTS_Demo/. Code can be found at https://github.com/haoweilou/ParaStyleTTS.
POME: Post Optimization Model Edit via Muon-style Projection
We introduce Post-Optimization Model Edit (POME), a new algorithm that enhances the performance of fine-tuned large language models using only their pretrained and fine-tuned checkpoints, without requiring extra data or further optimization. The core idea is to apply a muon-style projection to ΔW, the difference between the fine-tuned and pretrained weights. This projection uses truncated singular value decomposition (SVD) to equalize the influence of dominant update directions and prune small singular values, which often represent noise. As a simple post-processing step, POME is completely decoupled from the training pipeline. It requires zero modifications and imposes no overhead, making it universally compatible with any optimizer or distributed framework. POME delivers consistent gains, boosting average performance by +2.5\% on GSM8K and +1.0\% on code generation. Its broad applicability -- from 7B foundation models to 72B RLHF-instructed models -- establishes it as a practical, zero-cost enhancement for any fine-tuning pipeline. Code is available at https://github.com/NUS-HPC-AI-Lab/POME.
Scaling Rich Style-Prompted Text-to-Speech Datasets
We introduce Paralinguistic Speech Captions (ParaSpeechCaps), a large-scale dataset that annotates speech utterances with rich style captions. While rich abstract tags (e.g. guttural, nasal, pained) have been explored in small-scale human-annotated datasets, existing large-scale datasets only cover basic tags (e.g. low-pitched, slow, loud). We combine off-the-shelf text and speech embedders, classifiers and an audio language model to automatically scale rich tag annotations for the first time. ParaSpeechCaps covers a total of 59 style tags, including both speaker-level intrinsic tags and utterance-level situational tags. It consists of 342 hours of human-labelled data (PSC-Base) and 2427 hours of automatically annotated data (PSC-Scaled). We finetune Parler-TTS, an open-source style-prompted TTS model, on ParaSpeechCaps, and achieve improved style consistency (+7.9% Consistency MOS) and speech quality (+15.5% Naturalness MOS) over the best performing baseline that combines existing rich style tag datasets. We ablate several of our dataset design choices to lay the foundation for future work in this space. Our dataset, models and code are released at https://github.com/ajd12342/paraspeechcaps .
Barbie: Text to Barbie-Style 3D Avatars
Recent advances in text-guided 3D avatar generation have made substantial progress by distilling knowledge from diffusion models. Despite the plausible generated appearance, existing methods cannot achieve fine-grained disentanglement or high-fidelity modeling between inner body and outfit. In this paper, we propose Barbie, a novel framework for generating 3D avatars that can be dressed in diverse and high-quality Barbie-like garments and accessories. Instead of relying on a holistic model, Barbie achieves fine-grained disentanglement on avatars by semantic-aligned separated models for human body and outfits. These disentangled 3D representations are then optimized by different expert models to guarantee the domain-specific fidelity. To balance geometry diversity and reasonableness, we propose a series of losses for template-preserving and human-prior evolving. The final avatar is enhanced by unified texture refinement for superior texture consistency. Extensive experiments demonstrate that Barbie outperforms existing methods in both dressed human and outfit generation, supporting flexible apparel combination and animation. The code will be released for research purposes. Our project page is: https://xiaokunsun.github.io/Barbie.github.io/.
Creative Birds: Self-Supervised Single-View 3D Style Transfer
In this paper, we propose a novel method for single-view 3D style transfer that generates a unique 3D object with both shape and texture transfer. Our focus lies primarily on birds, a popular subject in 3D reconstruction, for which no existing single-view 3D transfer methods have been developed.The method we propose seeks to generate a 3D mesh shape and texture of a bird from two single-view images. To achieve this, we introduce a novel shape transfer generator that comprises a dual residual gated network (DRGNet), and a multi-layer perceptron (MLP). DRGNet extracts the features of source and target images using a shared coordinate gate unit, while the MLP generates spatial coordinates for building a 3D mesh. We also introduce a semantic UV texture transfer module that implements textural style transfer using semantic UV segmentation, which ensures consistency in the semantic meaning of the transferred regions. This module can be widely adapted to many existing approaches. Finally, our method constructs a novel 3D bird using a differentiable renderer. Experimental results on the CUB dataset verify that our method achieves state-of-the-art performance on the single-view 3D style transfer task. Code is available in https://github.com/wrk226/creative_birds.
Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain Generalization
The generalization with respect to domain shifts, as they frequently appear in applications such as autonomous driving, is one of the remaining big challenges for deep learning models. Therefore, we propose an exemplar-based style synthesis pipeline to improve domain generalization in semantic segmentation. Our method is based on a novel masked noise encoder for StyleGAN2 inversion. The model learns to faithfully reconstruct the image, preserving its semantic layout through noise prediction. Using the proposed masked noise encoder to randomize style and content combinations in the training set, i.e., intra-source style augmentation (ISSA) effectively increases the diversity of training data and reduces spurious correlation. As a result, we achieve up to 12.4% mIoU improvements on driving-scene semantic segmentation under different types of data shifts, i.e., changing geographic locations, adverse weather conditions, and day to night. ISSA is model-agnostic and straightforwardly applicable with CNNs and Transformers. It is also complementary to other domain generalization techniques, e.g., it improves the recent state-of-the-art solution RobustNet by 3% mIoU in Cityscapes to Dark Z\"urich. In addition, we demonstrate the strong plug-n-play ability of the proposed style synthesis pipeline, which is readily usable for extra-source exemplars e.g., web-crawled images, without any retraining or fine-tuning. Moreover, we study a new use case to indicate neural network's generalization capability by building a stylized proxy validation set. This application has significant practical sense for selecting models to be deployed in the open-world environment. Our code is available at https://github.com/boschresearch/ISSA.
Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing. While studies over extending 2D StyleGAN to 3D faces have emerged, a corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing. In this paper, we study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures. The problem is ill-posed: innumerable compositions of shape and texture could be rendered to the current image. Furthermore, with the limited capacity of a global latent code, 2D inversion methods cannot preserve faithful shape and texture at the same time when applied to 3D models. To solve this problem, we devise an effective self-training scheme to constrain the learning of inversion. The learning is done efficiently without any real-world 2D-3D training pairs but proxy samples generated from a 3D GAN. In addition, apart from a global latent code that captures the coarse shape and texture information, we augment the generation network with a local branch, where pixel-aligned features are added to faithfully reconstruct face details. We further consider a new pipeline to perform 3D view-consistent editing. Extensive experiments show that our method outperforms state-of-the-art inversion methods in both shape and texture reconstruction quality. Code and data will be released.
Code-enabled language models can outperform reasoning models on diverse tasks
Reasoning models (RMs), language models (LMs) trained with reinforcement learning to produce long-form natural language reasoning, have been remarkably successful, but they still require large amounts of computation and data to train, and can be slow and expensive to run. In this paper, we show that standard instruct LMs can already be elicited to be strong reasoners at a level comparable to or even surpassing their corresponding RMs (e.g., DeepSeek V3 vs R1) without finetuning, across diverse domains from instruction following and creative generation to mathematical reasoning. This is achieved by CodeAdapt, our simple recipe that combines the CodeAct framework, where LMs interleave natural language reasoning with code execution in a multi-step fashion, with few-shot bootstrap in-context learning from as few as five training problems. Analyzing four matched pairs of LMs and RMs, we find that CodeAdapt enables three LMs to outperform the corresponding RMs on average over eight tasks (up to 22.9%) while being 10-81% more token efficient, and delivers superior performance on six tasks when averaged over the four models (up to 35.7%). Furthermore, the code-augmented reasoning traces display rich and varied problem-solving strategies. Our findings support that (1) CodeAdapt-style learning and reasoning may be robust and domain general and (2) code-enabled LMs are cognitively grounded and powerful systems, potentially providing a strong foundation for in-weight reinforcement learning.
StyleDubber: Towards Multi-Scale Style Learning for Movie Dubbing
Given a script, the challenge in Movie Dubbing (Visual Voice Cloning, V2C) is to generate speech that aligns well with the video in both time and emotion, based on the tone of a reference audio track. Existing state-of-the-art V2C models break the phonemes in the script according to the divisions between video frames, which solves the temporal alignment problem but leads to incomplete phoneme pronunciation and poor identity stability. To address this problem, we propose StyleDubber, which switches dubbing learning from the frame level to phoneme level. It contains three main components: (1) A multimodal style adaptor operating at the phoneme level to learn pronunciation style from the reference audio, and generate intermediate representations informed by the facial emotion presented in the video; (2) An utterance-level style learning module, which guides both the mel-spectrogram decoding and the refining processes from the intermediate embeddings to improve the overall style expression; And (3) a phoneme-guided lip aligner to maintain lip sync. Extensive experiments on two of the primary benchmarks, V2C and Grid, demonstrate the favorable performance of the proposed method as compared to the current state-of-the-art. The source code and trained models will be released to the public.
CAMS: Color-Aware Multi-Style Transfer
Image style transfer aims to manipulate the appearance of a source image, or "content" image, to share similar texture and colors of a target "style" image. Ideally, the style transfer manipulation should also preserve the semantic content of the source image. A commonly used approach to assist in transferring styles is based on Gram matrix optimization. One problem of Gram matrix-based optimization is that it does not consider the correlation between colors and their styles. Specifically, certain textures or structures should be associated with specific colors. This is particularly challenging when the target style image exhibits multiple style types. In this work, we propose a color-aware multi-style transfer method that generates aesthetically pleasing results while preserving the style-color correlation between style and generated images. We achieve this desired outcome by introducing a simple but efficient modification to classic Gram matrix-based style transfer optimization. A nice feature of our method is that it enables the users to manually select the color associations between the target style and content image for more transfer flexibility. We validated our method with several qualitative comparisons, including a user study conducted with 30 participants. In comparison with prior work, our method is simple, easy to implement, and achieves visually appealing results when targeting images that have multiple styles. Source code is available at https://github.com/mahmoudnafifi/color-aware-style-transfer.
RepVGG: Making VGG-style ConvNets Great Again
We present a simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time body composed of nothing but a stack of 3x3 convolution and ReLU, while the training-time model has a multi-branch topology. Such decoupling of the training-time and inference-time architecture is realized by a structural re-parameterization technique so that the model is named RepVGG. On ImageNet, RepVGG reaches over 80% top-1 accuracy, which is the first time for a plain model, to the best of our knowledge. On NVIDIA 1080Ti GPU, RepVGG models run 83% faster than ResNet-50 or 101% faster than ResNet-101 with higher accuracy and show favorable accuracy-speed trade-off compared to the state-of-the-art models like EfficientNet and RegNet. The code and trained models are available at https://github.com/megvii-model/RepVGG.
Semi-Supervised Low-Resource Style Transfer of Indonesian Informal to Formal Language with Iterative Forward-Translation
In its daily use, the Indonesian language is riddled with informality, that is, deviations from the standard in terms of vocabulary, spelling, and word order. On the other hand, current available Indonesian NLP models are typically developed with the standard Indonesian in mind. In this work, we address a style-transfer from informal to formal Indonesian as a low-resource machine translation problem. We build a new dataset of parallel sentences of informal Indonesian and its formal counterpart. We benchmark several strategies to perform style transfer from informal to formal Indonesian. We also explore augmenting the training set with artificial forward-translated data. Since we are dealing with an extremely low-resource setting, we find that a phrase-based machine translation approach outperforms the Transformer-based approach. Alternatively, a pre-trained GPT-2 fined-tuned to this task performed equally well but costs more computational resource. Our findings show a promising step towards leveraging machine translation models for style transfer. Our code and data are available in https://github.com/haryoa/stif-indonesia
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing
The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.
Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models
Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize access to artistic creation. In this paper, we introduce STYLEBREEDER, a comprehensive dataset of 6.8M images and 1.8M prompts generated by 95K users on Artbreeder, a platform that has emerged as a significant hub for creative exploration with over 13M users. We introduce a series of tasks with this dataset aimed at identifying diverse artistic styles, generating personalized content, and recommending styles based on user interests. By documenting unique, user-generated styles that transcend conventional categories like 'cyberpunk' or 'Picasso,' we explore the potential for unique, crowd-sourced styles that could provide deep insights into the collective creative psyche of users worldwide. We also evaluate different personalization methods to enhance artistic expression and introduce a style atlas, making these models available in LoRA format for public use. Our research demonstrates the potential of text-to-image diffusion models to uncover and promote unique artistic expressions, further democratizing AI in art and fostering a more diverse and inclusive artistic community. The dataset, code and models are available at https://stylebreeder.github.io under a Public Domain (CC0) license.
StyleAvatar: Real-time Photo-realistic Portrait Avatar from a Single Video
Face reenactment methods attempt to restore and re-animate portrait videos as realistically as possible. Existing methods face a dilemma in quality versus controllability: 2D GAN-based methods achieve higher image quality but suffer in fine-grained control of facial attributes compared with 3D counterparts. In this work, we propose StyleAvatar, a real-time photo-realistic portrait avatar reconstruction method using StyleGAN-based networks, which can generate high-fidelity portrait avatars with faithful expression control. We expand the capabilities of StyleGAN by introducing a compositional representation and a sliding window augmentation method, which enable faster convergence and improve translation generalization. Specifically, we divide the portrait scenes into three parts for adaptive adjustments: facial region, non-facial foreground region, and the background. Besides, our network leverages the best of UNet, StyleGAN and time coding for video learning, which enables high-quality video generation. Furthermore, a sliding window augmentation method together with a pre-training strategy are proposed to improve translation generalization and training performance, respectively. The proposed network can converge within two hours while ensuring high image quality and a forward rendering time of only 20 milliseconds. Furthermore, we propose a real-time live system, which further pushes research into applications. Results and experiments demonstrate the superiority of our method in terms of image quality, full portrait video generation, and real-time re-animation compared to existing facial reenactment methods. Training and inference code for this paper are at https://github.com/LizhenWangT/StyleAvatar.
VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models
Despite the ability of existing large-scale text-to-image (T2I) models to generate high-quality images from detailed textual descriptions, they often lack the ability to precisely edit the generated or real images. In this paper, we propose a novel image editing method, DragonDiffusion, enabling Drag-style manipulation on Diffusion models. Specifically, we construct classifier guidance based on the strong correspondence of intermediate features in the diffusion model. It can transform the editing signals into gradients via feature correspondence loss to modify the intermediate representation of the diffusion model. Based on this guidance strategy, we also build a multi-scale guidance to consider both semantic and geometric alignment. Moreover, a cross-branch self-attention is added to maintain the consistency between the original image and the editing result. Our method, through an efficient design, achieves various editing modes for the generated or real images, such as object moving, object resizing, object appearance replacement, and content dragging. It is worth noting that all editing and content preservation signals come from the image itself, and the model does not require fine-tuning or additional modules. Our source code will be available at https://github.com/MC-E/DragonDiffusion.
CSGO: Content-Style Composition in Text-to-Image Generation
The diffusion model has shown exceptional capabilities in controlled image generation, which has further fueled interest in image style transfer. Existing works mainly focus on training free-based methods (e.g., image inversion) due to the scarcity of specific data. In this study, we present a data construction pipeline for content-style-stylized image triplets that generates and automatically cleanses stylized data triplets. Based on this pipeline, we construct a dataset IMAGStyle, the first large-scale style transfer dataset containing 210k image triplets, available for the community to explore and research. Equipped with IMAGStyle, we propose CSGO, a style transfer model based on end-to-end training, which explicitly decouples content and style features employing independent feature injection. The unified CSGO implements image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis. Extensive experiments demonstrate the effectiveness of our approach in enhancing style control capabilities in image generation. Additional visualization and access to the source code can be located on the project page: https://csgo-gen.github.io/.
StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models
In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs. The audio demos and source code are available at https://styletts2.github.io/.
VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions
Spoken language models (SLMs) have emerged as a unified paradigm for speech understanding and generation, enabling natural human machine interaction. However, while most progress has focused on semantic accuracy and instruction following, the ability of SLMs to adapt their speaking style based on spoken instructions has received limited attention. We introduce Voice Style Adaptation (VSA), a new task that examines whether SLMs can modify their speaking style, such as timbre, prosody, or persona following natural language spoken commands. To study this task, we present VStyle, a bilingual (Chinese & English) benchmark covering four categories of speech generation: acoustic attributes, natural language instruction, role play, and implicit empathy. We also introduce the Large Audio Language Model as a Judge (LALM as a Judge) framework, which progressively evaluates outputs along textual faithfulness, style adherence, and naturalness, ensuring reproducible and objective assessment. Experiments on commercial systems and open source SLMs demonstrate that current models face clear limitations in controllable style adaptation, highlighting both the novelty and challenge of this task. By releasing VStyle and its evaluation toolkit, we aim to provide the community with a foundation for advancing human centered spoken interaction. The dataset and code are publicly available at https://junzhan2000.github.io/VStyle.github.io/{project's homepage}.
SCAR: Efficient Instruction-Tuning for Large Language Models via Style Consistency-Aware Response Ranking
Recent studies have shown that maintaining a consistent response style by human experts and enhancing data quality in training sets can significantly improve the performance of fine-tuned Large Language Models (LLMs) while reducing the number of training examples needed. However, the precise definition of style and the relationship between style, data quality, and LLM performance remains unclear. This research decomposes response style into presentation and composition styles and finds that, among training data of similar quality, those with higher style consistency lead to better LLM performance. Inspired by this, we introduce Style Consistency-Aware Response Ranking (SCAR), which automatically prioritizes instruction-response pairs in the training set based on their response stylistic consistency. By selecting the most style-consistent examples, ranging from the top 25% to 0.7% of the full dataset, the fine-tuned LLMs can match or even surpass the performance of models trained on the entire dataset in coding and open-ended question-answering benchmarks. Code and data are available at https://github.com/zhuang-li/SCAR .
Few-Shot Detection of Machine-Generated Text using Style Representations
The advent of instruction-tuned language models that convincingly mimic human writing poses a significant risk of abuse. However, such abuse may be counteracted with the ability to detect whether a piece of text was composed by a language model rather than a human author. Some previous approaches to this problem have relied on supervised methods by training on corpora of confirmed human- and machine- written documents. Unfortunately, model under-specification poses an unavoidable challenge for neural network-based detectors, making them brittle in the face of data shifts, such as the release of newer language models producing still more fluent text than the models used to train the detectors. Other approaches require access to the models that may have generated a document in question, which is often impractical. In light of these challenges, we pursue a fundamentally different approach not relying on samples from language models of concern at training time. Instead, we propose to leverage representations of writing style estimated from human-authored text. Indeed, we find that features effective at distinguishing among human authors are also effective at distinguishing human from machine authors, including state-of-the-art large language models like Llama-2, ChatGPT, and GPT-4. Furthermore, given a handful of examples composed by each of several specific language models of interest, our approach affords the ability to predict which model generated a given document. The code and data to reproduce our experiments are available at https://github.com/LLNL/LUAR/tree/main/fewshot_iclr2024.
Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has significant influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring sample effect. Hypothetical analysis show that SFT efficiency is limited by training data. Guided by our analysis, we propose Re-distillation, a technique that fine-tunes pretrain model through small-scale distillation from the RL-trained policy. Experiments on Knight & Knave and MATH datasets demonstrate re-distillation's surprising efficiency: re-distilled models match RL performance with far fewer samples and less computation. Empirical verification shows that sample effect is a good indicator of performance improvements. As a result, on K&K dataset, our re-distilled Qwen2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. On MATH, Qwen2.5-1.5B fine-tuned with re-distilled 500 samples matches its instruct-tuned variant without RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning
Z-SASLM: Zero-Shot Style-Aligned SLI Blending Latent Manipulation
We introduce Z-SASLM, a Zero-Shot Style-Aligned SLI (Spherical Linear Interpolation) Blending Latent Manipulation pipeline that overcomes the limitations of current multi-style blending methods. Conventional approaches rely on linear blending, assuming a flat latent space leading to suboptimal results when integrating multiple reference styles. In contrast, our framework leverages the non-linear geometry of the latent space by using SLI Blending to combine weighted style representations. By interpolating along the geodesic on the hypersphere, Z-SASLM preserves the intrinsic structure of the latent space, ensuring high-fidelity and coherent blending of diverse styles - all without the need for fine-tuning. We further propose a new metric, Weighted Multi-Style DINO ViT-B/8, designed to quantitatively evaluate the consistency of the blended styles. While our primary focus is on the theoretical and practical advantages of SLI Blending for style manipulation, we also demonstrate its effectiveness in a multi-modal content fusion setting through comprehensive experimental studies. Experimental results show that Z-SASLM achieves enhanced and robust style alignment. The implementation code can be found at: https://github.com/alessioborgi/Z-SASLM.
Single Trajectory Distillation for Accelerating Image and Video Style Transfer
Diffusion-based stylization methods typically denoise from a specific partial noise state for image-to-image and video-to-video tasks. This multi-step diffusion process is computationally expensive and hinders real-world application. A promising solution to speed up the process is to obtain few-step consistency models through trajectory distillation. However, current consistency models only force the initial-step alignment between the probability flow ODE (PF-ODE) trajectories of the student and the imperfect teacher models. This training strategy can not ensure the consistency of whole trajectories. To address this issue, we propose single trajectory distillation (STD) starting from a specific partial noise state. We introduce a trajectory bank to store the teacher model's trajectory states, mitigating the time cost during training. Besides, we use an asymmetric adversarial loss to enhance the style and quality of the generated images. Extensive experiments on image and video stylization demonstrate that our method surpasses existing acceleration models in terms of style similarity and aesthetic evaluations. Our code and results will be available on the project page: https://single-trajectory-distillation.github.io.
Towards Multi-View Consistent Style Transfer with One-Step Diffusion via Vision Conditioning
The stylization of 3D scenes is an increasingly attractive topic in 3D vision. Although image style transfer has been extensively researched with promising results, directly applying 2D style transfer methods to 3D scenes often fails to preserve the structural and multi-view properties of 3D environments, resulting in unpleasant distortions in images from different viewpoints. To address these issues, we leverage the remarkable generative prior of diffusion-based models and propose a novel style transfer method, OSDiffST, based on a pre-trained one-step diffusion model (i.e., SD-Turbo) for rendering diverse styles in multi-view images of 3D scenes. To efficiently adapt the pre-trained model for multi-view style transfer on small datasets, we introduce a vision condition module to extract style information from the reference style image to serve as conditional input for the diffusion model and employ LoRA in diffusion model for adaptation. Additionally, we consider color distribution alignment and structural similarity between the stylized and content images using two specific loss functions. As a result, our method effectively preserves the structural information and multi-view consistency in stylized images without any 3D information. Experiments show that our method surpasses other promising style transfer methods in synthesizing various styles for multi-view images of 3D scenes. Stylized images from different viewpoints generated by our method achieve superior visual quality, with better structural integrity and less distortion. The source code is available at https://github.com/YushenZuo/OSDiffST.
Exploring Language Model's Code Generation Ability with Auxiliary Functions
Auxiliary function is a helpful component to improve language model's code generation ability. However, a systematic exploration of how they affect has yet to be done. In this work, we comprehensively evaluate the ability to utilize auxiliary functions encoded in recent code-pretrained language models. First, we construct a human-crafted evaluation set, called HumanExtension, which contains examples of two functions where one function assists the other. With HumanExtension, we design several experiments to examine their ability in a multifaceted way. Our evaluation processes enable a comprehensive understanding of including auxiliary functions in the prompt in terms of effectiveness and robustness. An additional implementation style analysis captures the models' various implementation patterns when they access the auxiliary function. Through this analysis, we discover the models' promising ability to utilize auxiliary functions including their self-improving behavior by implementing the two functions step-by-step. However, our analysis also reveals the model's underutilized behavior to call the auxiliary function, suggesting the future direction to enhance their implementation by eliciting the auxiliary function call ability encoded in the models. We release our code and dataset to facilitate this research direction.
FreeStyle: Free Lunch for Text-guided Style Transfer using Diffusion Models
The rapid development of generative diffusion models has significantly advanced the field of style transfer. However, most current style transfer methods based on diffusion models typically involve a slow iterative optimization process, e.g., model fine-tuning and textual inversion of style concept. In this paper, we introduce FreeStyle, an innovative style transfer method built upon a pre-trained large diffusion model, requiring no further optimization. Besides, our method enables style transfer only through a text description of the desired style, eliminating the necessity of style images. Specifically, we propose a dual-stream encoder and single-stream decoder architecture, replacing the conventional U-Net in diffusion models. In the dual-stream encoder, two distinct branches take the content image and style text prompt as inputs, achieving content and style decoupling. In the decoder, we further modulate features from the dual streams based on a given content image and the corresponding style text prompt for precise style transfer. Our experimental results demonstrate high-quality synthesis and fidelity of our method across various content images and style text prompts. The code and more results are available at our project website:https://freestylefreelunch.github.io/.
Soulstyler: Using Large Language Model to Guide Image Style Transfer for Target Object
Image style transfer occupies an important place in both computer graphics and computer vision. However, most current methods require reference to stylized images and cannot individually stylize specific objects. To overcome this limitation, we propose the "Soulstyler" framework, which allows users to guide the stylization of specific objects in an image through simple textual descriptions. We introduce a large language model to parse the text and identify stylization goals and specific styles. Combined with a CLIP-based semantic visual embedding encoder, the model understands and matches text and image content. We also introduce a novel localized text-image block matching loss that ensures that style transfer is performed only on specified target objects, while non-target regions remain in their original style. Experimental results demonstrate that our model is able to accurately perform style transfer on target objects according to textual descriptions without affecting the style of background regions. Our code will be available at https://github.com/yisuanwang/Soulstyler.
PromptASR for contextualized ASR with controllable style
Prompts are crucial to large language models as they provide context information such as topic or logical relationships. Inspired by this, we propose PromptASR, a framework that integrates prompts in end-to-end automatic speech recognition (E2E ASR) systems to achieve contextualized ASR with controllable style of transcriptions. Specifically, a dedicated text encoder encodes the text prompts and the encodings are injected into the speech encoder by cross-attending the features from two modalities. When using the ground truth text from preceding utterances as content prompt, the proposed system achieves 21.9% and 6.8% relative word error rate reductions on a book reading dataset and an in-house dataset compared to a baseline ASR system. The system can also take word-level biasing lists as prompt to improve recognition accuracy on rare words. An additional style prompt can be given to the text encoder and guide the ASR system to output different styles of transcriptions. The code is available at icefall.
Sem-CS: Semantic CLIPStyler for Text-Based Image Style Transfer
CLIPStyler demonstrated image style transfer with realistic textures using only a style text description (instead of requiring a reference style image). However, the ground semantics of objects in the style transfer output is lost due to style spill-over on salient and background objects (content mismatch) or over-stylization. To solve this, we propose Semantic CLIPStyler (Sem-CS), that performs semantic style transfer. Sem-CS first segments the content image into salient and non-salient objects and then transfers artistic style based on a given style text description. The semantic style transfer is achieved using global foreground loss (for salient objects) and global background loss (for non-salient objects). Our empirical results, including DISTS, NIMA and user study scores, show that our proposed framework yields superior qualitative and quantitative performance. Our code is available at github.com/chandagrover/sem-cs.
Block Shuffle: A Method for High-resolution Fast Style Transfer with Limited Memory
Fast Style Transfer is a series of Neural Style Transfer algorithms that use feed-forward neural networks to render input images. Because of the high dimension of the output layer, these networks require much memory for computation. Therefore, for high-resolution images, most mobile devices and personal computers cannot stylize them, which greatly limits the application scenarios of Fast Style Transfer. At present, the two existing solutions are purchasing more memory and using the feathering-based method, but the former requires additional cost, and the latter has poor image quality. To solve this problem, we propose a novel image synthesis method named block shuffle, which converts a single task with high memory consumption to multiple subtasks with low memory consumption. This method can act as a plug-in for Fast Style Transfer without any modification to the network architecture. We use the most popular Fast Style Transfer repository on GitHub as the baseline. Experiments show that the quality of high-resolution images generated by our method is better than that of the feathering-based method. Although our method is an order of magnitude slower than the baseline, it can stylize high-resolution images with limited memory, which is impossible with the baseline. The code and models will be made available on https://github.com/czczup/block-shuffle.
CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection
The growing integration of large language models (LLMs) into the peer review process presents potential risks to the fairness and reliability of scholarly evaluation. While LLMs offer valuable assistance for reviewers with language refinement, there is growing concern over their use to generate substantive review content. Existing general AI-generated text detectors are vulnerable to paraphrasing attacks and struggle to distinguish between surface language refinement and substantial content generation, suggesting that they primarily rely on stylistic cues. When applied to peer review, this limitation can result in unfairly suspecting reviews with permissible AI-assisted language enhancement, while failing to catch deceptively humanized AI-generated reviews. To address this, we propose a paradigm shift from style-based to content-based detection. Specifically, we introduce CoCoNUTS, a content-oriented benchmark built upon a fine-grained dataset of AI-generated peer reviews, covering six distinct modes of human-AI collaboration. Furthermore, we develop CoCoDet, an AI review detector via a multi-task learning framework, designed to achieve more accurate and robust detection of AI involvement in review content. Our work offers a practical foundation for evaluating the use of LLMs in peer review, and contributes to the development of more precise, equitable, and reliable detection methods for real-world scholarly applications. Our code and data will be publicly available at https://github.com/Y1hanChen/COCONUTS.
Disentangling Writer and Character Styles for Handwriting Generation
Training machines to synthesize diverse handwritings is an intriguing task. Recently, RNN-based methods have been proposed to generate stylized online Chinese characters. However, these methods mainly focus on capturing a person's overall writing style, neglecting subtle style inconsistencies between characters written by the same person. For example, while a person's handwriting typically exhibits general uniformity (e.g., glyph slant and aspect ratios), there are still small style variations in finer details (e.g., stroke length and curvature) of characters. In light of this, we propose to disentangle the style representations at both writer and character levels from individual handwritings to synthesize realistic stylized online handwritten characters. Specifically, we present the style-disentangled Transformer (SDT), which employs two complementary contrastive objectives to extract the style commonalities of reference samples and capture the detailed style patterns of each sample, respectively. Extensive experiments on various language scripts demonstrate the effectiveness of SDT. Notably, our empirical findings reveal that the two learned style representations provide information at different frequency magnitudes, underscoring the importance of separate style extraction. Our source code is public at: https://github.com/dailenson/SDT.
How to Boost Face Recognition with StyleGAN?
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. On the other hand, self-supervised revolution in the industry motivates research on the adaptation of related techniques to facial recognition. One of the most popular practical tricks is to augment the dataset by the samples drawn from generative models while preserving the identity. We show that a simple approach based on fine-tuning pSp encoder for StyleGAN allows us to improve upon the state-of-the-art facial recognition and performs better compared to training on synthetic face identities. We also collect large-scale unlabeled datasets with controllable ethnic constitution -- AfricanFaceSet-5M (5 million images of different people) and AsianFaceSet-3M (3 million images of different people) -- and we show that pretraining on each of them improves recognition of the respective ethnicities (as well as others), while combining all unlabeled datasets results in the biggest performance increase. Our self-supervised strategy is the most useful with limited amounts of labeled training data, which can be beneficial for more tailored face recognition tasks and when facing privacy concerns. Evaluation is based on a standard RFW dataset and a new large-scale RB-WebFace benchmark. The code and data are made publicly available at https://github.com/seva100/stylegan-for-facerec.
RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style
Reward models are critical in techniques like Reinforcement Learning from Human Feedback (RLHF) and Inference Scaling Laws, where they guide language model alignment and select optimal responses. Despite their importance, existing reward model benchmarks often evaluate models by asking them to distinguish between responses generated by models of varying power. However, this approach fails to assess reward models on subtle but critical content changes and variations in style, resulting in a low correlation with policy model performance. To this end, we introduce RM-Bench, a novel benchmark designed to evaluate reward models based on their sensitivity to subtle content differences and resistance to style biases. Extensive experiments demonstrate that RM-Bench strongly correlates with policy model performance, making it a reliable reference for selecting reward models to align language models effectively. We evaluate nearly 40 reward models on RM-Bench. Our results reveal that even state-of-the-art models achieve an average performance of only 46.6%, which falls short of random-level accuracy (50%) when faced with style bias interference. These findings highlight the significant room for improvement in current reward models. Related code and data are available at https://github.com/THU-KEG/RM-Bench.
Mirror-NeRF: Learning Neural Radiance Fields for Mirrors with Whitted-Style Ray Tracing
Recently, Neural Radiance Fields (NeRF) has exhibited significant success in novel view synthesis, surface reconstruction, etc. However, since no physical reflection is considered in its rendering pipeline, NeRF mistakes the reflection in the mirror as a separate virtual scene, leading to the inaccurate reconstruction of the mirror and multi-view inconsistent reflections in the mirror. In this paper, we present a novel neural rendering framework, named Mirror-NeRF, which is able to learn accurate geometry and reflection of the mirror and support various scene manipulation applications with mirrors, such as adding new objects or mirrors into the scene and synthesizing the reflections of these new objects in mirrors, controlling mirror roughness, etc. To achieve this goal, we propose a unified radiance field by introducing the reflection probability and tracing rays following the light transport model of Whitted Ray Tracing, and also develop several techniques to facilitate the learning process. Experiments and comparisons on both synthetic and real datasets demonstrate the superiority of our method. The code and supplementary material are available on the project webpage: https://zju3dv.github.io/Mirror-NeRF/.
UniVST: A Unified Framework for Training-free Localized Video Style Transfer
This paper presents UniVST, a unified framework for localized video style transfer based on diffusion models. It operates without the need for training, offering a distinct advantage over existing diffusion methods that transfer style across entire videos. The endeavors of this paper comprise: (1) A point-matching mask propagation strategy that leverages the feature maps from the DDIM inversion. This streamlines the model's architecture by obviating the need for tracking models. (2) A training-free AdaIN-guided localized video stylization mechanism that operates at both the latent and attention levels. This balances content fidelity and style richness, mitigating the loss of localized details commonly associated with direct video stylization. (3) A sliding-window consistent smoothing scheme that harnesses optical flow within the pixel representation and refines predicted noise to update the latent space. This significantly enhances temporal consistency and diminishes artifacts in stylized video. Our proposed UniVST has been validated to be superior to existing methods in quantitative and qualitative metrics. It adeptly addresses the challenges of preserving the primary object's style while ensuring temporal consistency and detail preservation. Our code is available at https://github.com/QuanjianSong/UniVST.
SA-LUT: Spatial Adaptive 4D Look-Up Table for Photorealistic Style Transfer
Photorealistic style transfer (PST) enables real-world color grading by adapting reference image colors while preserving content structure. Existing methods mainly follow either approaches: generation-based methods that prioritize stylistic fidelity at the cost of content integrity and efficiency, or global color transformation methods such as LUT, which preserve structure but lack local adaptability. To bridge this gap, we propose Spatial Adaptive 4D Look-Up Table (SA-LUT), combining LUT efficiency with neural network adaptability. SA-LUT features: (1) a Style-guided 4D LUT Generator that extracts multi-scale features from the style image to predict a 4D LUT, and (2) a Context Generator using content-style cross-attention to produce a context map. This context map enables spatially-adaptive adjustments, allowing our 4D LUT to apply precise color transformations while preserving structural integrity. To establish a rigorous evaluation framework for photorealistic style transfer, we introduce PST50, the first benchmark specifically designed for PST assessment. Experiments demonstrate that SA-LUT substantially outperforms state-of-the-art methods, achieving a 66.7% reduction in LPIPS score compared to 3D LUT approaches, while maintaining real-time performance at 16 FPS for video stylization. Our code and benchmark are available at https://github.com/Ry3nG/SA-LUT
StyleMorpheus: A Style-Based 3D-Aware Morphable Face Model
For 3D face modeling, the recently developed 3D-aware neural rendering methods are able to render photorealistic face images with arbitrary viewing directions. The training of the parametric controllable 3D-aware face models, however, still relies on a large-scale dataset that is lab-collected. To address this issue, this paper introduces "StyleMorpheus", the first style-based neural 3D Morphable Face Model (3DMM) that is trained on in-the-wild images. It inherits 3DMM's disentangled controllability (over face identity, expression, and appearance) but without the need for accurately reconstructed explicit 3D shapes. StyleMorpheus employs an auto-encoder structure. The encoder aims at learning a representative disentangled parametric code space and the decoder improves the disentanglement using shape and appearance-related style codes in the different sub-modules of the network. Furthermore, we fine-tune the decoder through style-based generative adversarial learning to achieve photorealistic 3D rendering quality. The proposed style-based design enables StyleMorpheus to achieve state-of-the-art 3D-aware face reconstruction results, while also allowing disentangled control of the reconstructed face. Our model achieves real-time rendering speed, allowing its use in virtual reality applications. We also demonstrate the capability of the proposed style-based design in face editing applications such as style mixing and color editing. Project homepage: https://github.com/ubc-3d-vision-lab/StyleMorpheus.
Harmonizing Pixels and Melodies: Maestro-Guided Film Score Generation and Composition Style Transfer
We introduce a film score generation framework to harmonize visual pixels and music melodies utilizing a latent diffusion model. Our framework processes film clips as input and generates music that aligns with a general theme while offering the capability to tailor outputs to a specific composition style. Our model directly produces music from video, utilizing a streamlined and efficient tuning mechanism on ControlNet. It also integrates a film encoder adept at understanding the film's semantic depth, emotional impact, and aesthetic appeal. Additionally, we introduce a novel, effective yet straightforward evaluation metric to evaluate the originality and recognizability of music within film scores. To fill this gap for film scores, we curate a comprehensive dataset of film videos and legendary original scores, injecting domain-specific knowledge into our data-driven generation model. Our model outperforms existing methodologies in creating film scores, capable of generating music that reflects the guidance of a maestro's style, thereby redefining the benchmark for automated film scores and laying a robust groundwork for future research in this domain. The code and generated samples are available at https://anonymous.4open.science/r/HPM.
AdSEE: Investigating the Impact of Image Style Editing on Advertisement Attractiveness
Online advertisements are important elements in e-commerce sites, social media platforms, and search engines. With the increasing popularity of mobile browsing, many online ads are displayed with visual information in the form of a cover image in addition to text descriptions to grab the attention of users. Various recent studies have focused on predicting the click rates of online advertisements aware of visual features or composing optimal advertisement elements to enhance visibility. In this paper, we propose Advertisement Style Editing and Attractiveness Enhancement (AdSEE), which explores whether semantic editing to ads images can affect or alter the popularity of online advertisements. We introduce StyleGAN-based facial semantic editing and inversion to ads images and train a click rate predictor attributing GAN-based face latent representations in addition to traditional visual and textual features to click rates. Through a large collected dataset named QQ-AD, containing 20,527 online ads, we perform extensive offline tests to study how different semantic directions and their edit coefficients may impact click rates. We further design a Genetic Advertisement Editor to efficiently search for the optimal edit directions and intensity given an input ad cover image to enhance its projected click rates. Online A/B tests performed over a period of 5 days have verified the increased click-through rates of AdSEE-edited samples as compared to a control group of original ads, verifying the relation between image styles and ad popularity. We open source the code for AdSEE research at https://github.com/LiyaoJiang1998/adsee.
On Code-Induced Reasoning in LLMs
Code data has been shown to enhance the reasoning capabilities of large language models (LLMs), but it remains unclear which aspects of code are most responsible. We investigate this question with a systematic, data-centric framework. We construct parallel instruction datasets in ten programming languages and apply controlled perturbations that selectively disrupt structural or semantic properties of code. We then finetune LLMs from five model families and eight scales on each variant and evaluate their performance on natural language, math, and code tasks. Across 3,331 experiments, our results show that LLMs are more vulnerable to structural perturbations than semantic ones, particularly on math and code tasks. Appropriate abstractions like pseudocode and flowcharts can be as effective as code, while encoding the same information with fewer tokens without adhering to original syntax can often retain or even improve performance. Remarkably, even corrupted code with misleading signals remains competitive when surface-level regularities persist. Finally, syntactic styles also shape task-specific gains with Python favoring natural language reasoning and lower-level languages such as Java and Rust favoring math. Through our systematic framework, we aim to provide insight into how different properties of code influence reasoning and inform the design of training data for enhancing LLM reasoning capabilities.
ChartMaster: Advancing Chart-to-Code Generation with Real-World Charts and Chart Similarity Reinforcement Learning
The chart-to-code generation task requires MLLMs to convert chart images into executable code. This task faces two main challenges: limited data diversity and the difficulty of maintaining visual consistency between generated charts and the original ones. Existing datasets mainly rely on synthetic seed data to prompt GPT models for code generation, resulting in homogeneous samples that limit model generalization to real-world chart styles. To address this, we propose ReChartPrompt, leveraging real-world, human-designed charts extracted from arXiv papers as prompts. By harnessing the rich content and diverse visual styles of arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse dataset that better reflects realistic chart variations. For the second challenge, although SFT improves code understanding by optimizing next-token prediction, it does not provide direct supervision on visual features. As a result, it often fails to guarantee that the generated charts visually match the original ones. To address this, we propose ChartSimRL, a GRPO-based reinforcement learning algorithm guided by a novel chart similarity reward. This reward consists of two components: attribute similarity, which measures the overlap of chart attributes like layout and color between the generated and original charts, and visual similarity, which evaluates overall visual features, including texture, using convolutional neural networks. Unlike traditional text-based rewards, our reward accounts for the multimodal nature of the chart-to-code generation task, significantly enhancing the model's ability to accurately reproduce charts. Integrating ReChartPrompt and ChartSimRL, we develop the ChartMaster model, achieving SOTA results among 7B-parameter models and rivaling GPT-4o on various chart-to-code benchmarks. All resources are available at https://github.com/WentaoTan/ChartMaster.
Inverse Virtual Try-On: Generating Multi-Category Product-Style Images from Clothed Individuals
While virtual try-on (VTON) systems aim to render a garment onto a target person image, this paper tackles the novel task of virtual try-off (VTOFF), which addresses the inverse problem: generating standardized product images of garments from real-world photos of clothed individuals. Unlike VTON, which must resolve diverse pose and style variations, VTOFF benefits from a consistent and well-defined output format -- typically a flat, lay-down-style representation of the garment -- making it a promising tool for data generation and dataset enhancement. However, existing VTOFF approaches face two major limitations: (i) difficulty in disentangling garment features from occlusions and complex poses, often leading to visual artifacts, and (ii) restricted applicability to single-category garments (e.g., upper-body clothes only), limiting generalization. To address these challenges, we present Text-Enhanced MUlti-category Virtual Try-Off (TEMU-VTOFF), a novel architecture featuring a dual DiT-based backbone with a modified multimodal attention mechanism for robust garment feature extraction. Our architecture is designed to receive garment information from multiple modalities like images, text, and masks to work in a multi-category setting. Finally, we propose an additional alignment module to further refine the generated visual details. Experiments on VITON-HD and Dress Code datasets show that TEMU-VTOFF sets a new state-of-the-art on the VTOFF task, significantly improving both visual quality and fidelity to the target garments.
DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing
This paper presents a new pre-trained language model, DeBERTaV3, which improves the original DeBERTa model by replacing mask language modeling (MLM) with replaced token detection (RTD), a more sample-efficient pre-training task. Our analysis shows that vanilla embedding sharing in ELECTRA hurts training efficiency and model performance. This is because the training losses of the discriminator and the generator pull token embeddings in different directions, creating the "tug-of-war" dynamics. We thus propose a new gradient-disentangled embedding sharing method that avoids the tug-of-war dynamics, improving both training efficiency and the quality of the pre-trained model. We have pre-trained DeBERTaV3 using the same settings as DeBERTa to demonstrate its exceptional performance on a wide range of downstream natural language understanding (NLU) tasks. Taking the GLUE benchmark with eight tasks as an example, the DeBERTaV3 Large model achieves a 91.37% average score, which is 1.37% over DeBERTa and 1.91% over ELECTRA, setting a new state-of-the-art (SOTA) among the models with a similar structure. Furthermore, we have pre-trained a multi-lingual model mDeBERTa and observed a larger improvement over strong baselines compared to English models. For example, the mDeBERTa Base achieves a 79.8% zero-shot cross-lingual accuracy on XNLI and a 3.6% improvement over XLM-R Base, creating a new SOTA on this benchmark. We have made our pre-trained models and inference code publicly available at https://github.com/microsoft/DeBERTa.
POWSM: A Phonetic Open Whisper-Style Speech Foundation Model
Recent advances in spoken language processing have led to substantial progress in phonetic tasks such as automatic speech recognition (ASR), phone recognition (PR), grapheme-to-phoneme conversion (G2P), and phoneme-to-grapheme conversion (P2G). Despite their conceptual similarity, these tasks have largely been studied in isolation, each relying on task-specific architectures and datasets. In this paper, we introduce POWSM (Phonetic Open Whisper-style Speech Model), the first unified framework capable of jointly performing multiple phone-related tasks. POWSM enables seamless conversion between audio, text (graphemes), and phones, opening up new possibilities for universal and low-resource speech processing. Our model outperforms or matches specialized PR models of similar size (Wav2Vec2Phoneme and ZIPA) while jointly supporting G2P, P2G, and ASR. Our training data, code and models are released to foster open science.
Mellum: Production-Grade in-IDE Contextual Code Completion with Multi-File Project Understanding
We present the Mellum models family, open-weight code completion models designed for interactive use in JetBrains IDEs. Mellums have 4B parameters, adopt a Llama-style architecture, and are pre-trained on ~4T tokens of permissively licensed, multi-language code. Our studies show that (i) careful data curation and staged training significantly improve the model's quality, (ii) editor-critical capabilities such as context packing are necessary for high-quality suggestions, and (iii) a compact, task-focused model can meet the cost and latency constraints of interactive completion. In the paper, we describe an end-to-end industrial pipeline for producing contextualized in-editor completion: disciplined data governance, multi-stage training that includes fill-in-the-middle and project context via supervised fine-tuning, and alignment via direct preference optimization using feedback from real-world scenarios. Our quality evaluations include both large-scale offline benchmarks and online telemetry from production deployments in JetBrains IDEs. Mellums are released under the Apache-2.0 license on HuggingFace, with a public model card providing a reproducible reference for practitioners. Our experience offers a pragmatic blueprint for taking a focused, open model from a research prototype to at scale production for hundreds of thousands of users.
SemCoder: Training Code Language Models with Comprehensive Semantics
Code Large Language Models (Code LLMs) have excelled at tasks like code completion but often miss deeper semantics such as execution effects and dynamic states. This paper aims to bridge the gap between Code LLMs' reliance on static text data and the need for thorough semantic understanding for complex tasks like debugging and program repair. We introduce a novel strategy to train Code LLMs with comprehensive semantics, encompassing high-level functional descriptions, local execution effects of individual statements, and overall input/output behavior, thereby linking static code text with dynamic execution states. We begin by collecting PyX, a clean code corpus of fully executable samples with functional descriptions and execution tracing. We propose training Code LLMs to write code and represent and reason about execution behaviors using natural language, mimicking human verbal debugging. This approach led to the development of SemCoder, a Code LLM with only 6.7B parameters, which shows competitive performance with GPT-3.5-turbo on code generation and execution reasoning tasks. SemCoder achieves 81.1% on HumanEval (GPT-3.5-turbo: 76.8%) and 54.5% on CRUXEval-I (GPT-3.5-turbo: 50.3%). We also study the effectiveness of SemCoder's monologue-style execution reasoning compared to concrete scratchpad reasoning, showing that our approach integrates semantics from multiple dimensions more smoothly. Finally, we demonstrate the potential of applying learned semantics to improve Code LLMs' debugging and self-refining capabilities.
Few shot font generation via transferring similarity guided global style and quantization local style
Automatic few-shot font generation (AFFG), aiming at generating new fonts with only a few glyph references, reduces the labor cost of manually designing fonts. However, the traditional AFFG paradigm of style-content disentanglement cannot capture the diverse local details of different fonts. So, many component-based approaches are proposed to tackle this problem. The issue with component-based approaches is that they usually require special pre-defined glyph components, e.g., strokes and radicals, which is infeasible for AFFG of different languages. In this paper, we present a novel font generation approach by aggregating styles from character similarity-guided global features and stylized component-level representations. We calculate the similarity scores of the target character and the referenced samples by measuring the distance along the corresponding channels from the content features, and assigning them as the weights for aggregating the global style features. To better capture the local styles, a cross-attention-based style transfer module is adopted to transfer the styles of reference glyphs to the components, where the components are self-learned discrete latent codes through vector quantization without manual definition. With these designs, our AFFG method could obtain a complete set of component-level style representations, and also control the global glyph characteristics. The experimental results reflect the effectiveness and generalization of the proposed method on different linguistic scripts, and also show its superiority when compared with other state-of-the-art methods. The source code can be found at https://github.com/awei669/VQ-Font.
FastUMI-100K: Advancing Data-driven Robotic Manipulation with a Large-scale UMI-style Dataset
Data-driven robotic manipulation learning depends on large-scale, high-quality expert demonstration datasets. However, existing datasets, which primarily rely on human teleoperated robot collection, are limited in terms of scalability, trajectory smoothness, and applicability across different robotic embodiments in real-world environments. In this paper, we present FastUMI-100K, a large-scale UMI-style multimodal demonstration dataset, designed to overcome these limitations and meet the growing complexity of real-world manipulation tasks. Collected by FastUMI, a novel robotic system featuring a modular, hardware-decoupled mechanical design and an integrated lightweight tracking system, FastUMI-100K offers a more scalable, flexible, and adaptable solution to fulfill the diverse requirements of real-world robot demonstration data. Specifically, FastUMI-100K contains over 100K+ demonstration trajectories collected across representative household environments, covering 54 tasks and hundreds of object types. Our dataset integrates multimodal streams, including end-effector states, multi-view wrist-mounted fisheye images and textual annotations. Each trajectory has a length ranging from 120 to 500 frames. Experimental results demonstrate that FastUMI-100K enables high policy success rates across various baseline algorithms, confirming its robustness, adaptability, and real-world applicability for solving complex, dynamic manipulation challenges. The source code and dataset will be released in this link https://github.com/MrKeee/FastUMI-100K.
FontDiffuser: One-Shot Font Generation via Denoising Diffusion with Multi-Scale Content Aggregation and Style Contrastive Learning
Automatic font generation is an imitation task, which aims to create a font library that mimics the style of reference images while preserving the content from source images. Although existing font generation methods have achieved satisfactory performance, they still struggle with complex characters and large style variations. To address these issues, we propose FontDiffuser, a diffusion-based image-to-image one-shot font generation method, which innovatively models the font imitation task as a noise-to-denoise paradigm. In our method, we introduce a Multi-scale Content Aggregation (MCA) block, which effectively combines global and local content cues across different scales, leading to enhanced preservation of intricate strokes of complex characters. Moreover, to better manage the large variations in style transfer, we propose a Style Contrastive Refinement (SCR) module, which is a novel structure for style representation learning. It utilizes a style extractor to disentangle styles from images, subsequently supervising the diffusion model via a meticulously designed style contrastive loss. Extensive experiments demonstrate FontDiffuser's state-of-the-art performance in generating diverse characters and styles. It consistently excels on complex characters and large style changes compared to previous methods. The code is available at https://github.com/yeungchenwa/FontDiffuser.
STraceBERT: Source Code Retrieval using Semantic Application Traces
Software reverse engineering is an essential task in software engineering and security, but it can be a challenging process, especially for adversarial artifacts. To address this challenge, we present STraceBERT, a novel approach that utilizes a Java dynamic analysis tool to record calls to core Java libraries, and pretrain a BERT-style model on the recorded application traces for effective method source code retrieval from a candidate set. Our experiments demonstrate the effectiveness of STraceBERT in retrieving the source code compared to existing approaches. Our proposed approach offers a promising solution to the problem of code retrieval in software reverse engineering and opens up new avenues for further research in this area.
Understanding writing style in social media with a supervised contrastively pre-trained transformer
Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation. Malicious actors now have unprecedented freedom to misbehave, leading to severe societal unrest and dire consequences, as exemplified by events such as the Capitol assault during the US presidential election and the Antivaxx movement during the COVID-19 pandemic. Understanding online language has become more pressing than ever. While existing works predominantly focus on content analysis, we aim to shift the focus towards understanding harmful behaviors by relating content to their respective authors. Numerous novel approaches attempt to learn the stylistic features of authors in texts, but many of these approaches are constrained by small datasets or sub-optimal training losses. To overcome these limitations, we introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 10^6 authored texts involving 70k heterogeneous authors. Our model leverages Supervised Contrastive Loss to teach the model to minimize the distance between texts authored by the same individual. This author pretext pre-training task yields competitive performance at zero-shot with PAN challenges on attribution and clustering. Additionally, we attain promising results on PAN verification challenges using a single dense layer, with our model serving as an embedding encoder. Finally, we present results from our test partition on Reddit. Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80\% accuracy. We share our pre-trained model at huggingface (https://huggingface.co/AIDA-UPM/star) and our code is available at (https://github.com/jahuerta92/star)
Meta-Tuning LLMs to Leverage Lexical Knowledge for Generalizable Language Style Understanding
Language style is often used by writers to convey their intentions, identities, and mastery of language. In this paper, we show that current large language models struggle to capture some language styles without fine-tuning. To address this challenge, we investigate whether LLMs can be meta-trained based on representative lexicons to recognize new styles they have not been fine-tuned on. Experiments on 13 established style classification tasks, as well as 63 novel tasks generated using LLMs, demonstrate that meta-training with style lexicons consistently improves zero-shot transfer across styles. We release the code and data at http://github.com/octaviaguo/Style-LLM .
CLIP-Guided StyleGAN Inversion for Text-Driven Real Image Editing
Researchers have recently begun exploring the use of StyleGAN-based models for real image editing. One particularly interesting application is using natural language descriptions to guide the editing process. Existing approaches for editing images using language either resort to instance-level latent code optimization or map predefined text prompts to some editing directions in the latent space. However, these approaches have inherent limitations. The former is not very efficient, while the latter often struggles to effectively handle multi-attribute changes. To address these weaknesses, we present CLIPInverter, a new text-driven image editing approach that is able to efficiently and reliably perform multi-attribute changes. The core of our method is the use of novel, lightweight text-conditioned adapter layers integrated into pretrained GAN-inversion networks. We demonstrate that by conditioning the initial inversion step on the CLIP embedding of the target description, we are able to obtain more successful edit directions. Additionally, we use a CLIP-guided refinement step to make corrections in the resulting residual latent codes, which further improves the alignment with the text prompt. Our method outperforms competing approaches in terms of manipulation accuracy and photo-realism on various domains including human faces, cats, and birds, as shown by our qualitative and quantitative results.
