Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations
While deep learning has led to huge progress in complex image classification tasks like ImageNet, unexpected failure modes, e.g. via spurious features, call into question how reliably these classifiers work in the wild. Furthermore, for safety-critical tasks the black-box nature of their decisions is problematic, and explanations or at least methods which make decisions plausible are needed urgently. In this paper, we address these problems by generating images that optimize a classifier-derived objective using a framework for guided image generation. We analyze the decisions of image classifiers by visual counterfactual explanations (VCEs), detection of systematic mistakes by analyzing images where classifiers maximally disagree, and visualization of neurons and spurious features. In this way, we validate existing observations, e.g. the shape bias of adversarially robust models, as well as novel failure modes, e.g. systematic errors of zero-shot CLIP classifiers. Moreover, our VCEs outperform previous work while being more versatile.
The Gaussian Discriminant Variational Autoencoder (GdVAE): A Self-Explainable Model with Counterfactual Explanations
Visual counterfactual explanation (CF) methods modify image concepts, e.g, shape, to change a prediction to a predefined outcome while closely resembling the original query image. Unlike self-explainable models (SEMs) and heatmap techniques, they grant users the ability to examine hypothetical "what-if" scenarios. Previous CF methods either entail post-hoc training, limiting the balance between transparency and CF quality, or demand optimization during inference. To bridge the gap between transparent SEMs and CF methods, we introduce the GdVAE, a self-explainable model based on a conditional variational autoencoder (CVAE), featuring a Gaussian discriminant analysis (GDA) classifier and integrated CF explanations. Full transparency is achieved through a generative classifier that leverages class-specific prototypes for the downstream task and a closed-form solution for CFs in the latent space. The consistency of CFs is improved by regularizing the latent space with the explainer function. Extensive comparisons with existing approaches affirm the effectiveness of our method in producing high-quality CF explanations while preserving transparency. Code and models are public.
Global Counterfactual Directions
Despite increasing progress in development of methods for generating visual counterfactual explanations, especially with the recent rise of Denoising Diffusion Probabilistic Models, previous works consider them as an entirely local technique. In this work, we take the first step at globalizing them. Specifically, we discover that the latent space of Diffusion Autoencoders encodes the inference process of a given classifier in the form of global directions. We propose a novel proxy-based approach that discovers two types of these directions with the use of only single image in an entirely black-box manner. Precisely, g-directions allow for flipping the decision of a given classifier on an entire dataset of images, while h-directions further increase the diversity of explanations. We refer to them in general as Global Counterfactual Directions (GCDs). Moreover, we show that GCDs can be naturally combined with Latent Integrated Gradients resulting in a new black-box attribution method, while simultaneously enhancing the understanding of counterfactual explanations. We validate our approach on existing benchmarks and show that it generalizes to real-world use-cases.
Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images
Recent studies have shown that Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors, resulting in errors in visually grounded tasks and hallucinations. We hypothesize that this issue arises because existing VLMs are not explicitly trained to generate texts that are accurately grounded in fine-grained image details. To enhance visual feedback during VLM training, we propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details and aligning them with corresponding text tokens. To further facilitate this detailed alignment, we introduce MVC, a paired image-text dataset built by automatically filtering and augmenting visual counterfactual data to challenge the model with hard contrastive cases involving Minimal Visual Contrasts. Experiments show that our method consistently improves VLM performance across diverse benchmarks covering various abilities and domains, achieving up to a 22% reduction in hallucinations, and significant gains in vision-centric and general tasks. Notably, these improvements become increasingly pronounced in benchmarks with higher visual dependency. In short, S-VCO offers a significant enhancement of VLM's visually-dependent task performance while retaining or even improving the model's general abilities. We opensource our code at https://s-vco.github.io/
CounterVQA: Evaluating and Improving Counterfactual Reasoning in Vision-Language Models for Video Understanding
Vision Language Models (VLMs) have recently shown significant advancements in video understanding, especially in feature alignment, event reasoning, and instruction-following tasks. However, their capability for counterfactual reasoning, inferring alternative outcomes under hypothetical conditions, remains underexplored. This capability is essential for robust video understanding, as it requires identifying underlying causal structures and reasoning about unobserved possibilities, rather than merely recognizing observed patterns. To systematically evaluate this capability, we introduce CounterVQA, a video-based benchmark featuring three progressive difficulty levels that assess different aspects of counterfactual reasoning. Through comprehensive evaluation of both state-of-the-art open-source and closed-source models, we uncover a substantial performance gap: while these models achieve reasonable accuracy on simple counterfactual questions, performance degrades significantly on complex multi-hop causal chains. To address these limitations, we develop a post-training method, CFGPT, that enhances a model's visual counterfactual reasoning ability by distilling its counterfactual reasoning capability from the language modality, yielding consistent improvements across all CounterVQA difficulty levels. Dataset and code will be further released.
Error-Driven Scene Editing for 3D Grounding in Large Language Models
Despite recent progress in 3D-LLMs, they remain limited in accurately grounding language to visual and spatial elements in 3D environments. This limitation stems in part from training data that focuses on language reasoning rather than spatial understanding due to scarce 3D resources, leaving inherent grounding biases unresolved. To address this, we propose 3D scene editing as a key mechanism to generate precise visual counterfactuals that mitigate these biases through fine-grained spatial manipulation, without requiring costly scene reconstruction or large-scale 3D data collection. Furthermore, to make these edits targeted and directly address the specific weaknesses of the model, we introduce DEER-3D, an error-driven framework following a structured "Decompose, Diagnostic Evaluation, Edit, and Re-train" workflow, rather than broadly or randomly augmenting data as in conventional approaches. Specifically, upon identifying a grounding failure of the 3D-LLM, our framework first diagnoses the exact predicate-level error (e.g., attribute or spatial relation). It then executes minimal, predicate-aligned 3D scene edits, such as recoloring or repositioning, to produce targeted counterfactual supervision for iterative model fine-tuning, significantly enhancing grounding accuracy. We evaluate our editing pipeline across multiple benchmarks for 3D grounding and scene understanding tasks, consistently demonstrating improvements across all evaluated datasets through iterative refinement. DEER-3D underscores the effectiveness of targeted, error-driven scene editing in bridging linguistic reasoning capabilities with spatial grounding in 3D LLMs.
HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
Recent progress in vision-language segmentation has significantly advanced grounded visual understanding. However, these models often exhibit hallucinations by producing segmentation masks for objects not grounded in the image content or by incorrectly labeling irrelevant regions. Existing evaluation protocols for segmentation hallucination primarily focus on label or textual hallucinations without manipulating the visual context, limiting their capacity to diagnose critical failures. In response, we introduce HalluSegBench, the first benchmark specifically designed to evaluate hallucinations in visual grounding through the lens of counterfactual visual reasoning. Our benchmark consists of a novel dataset of 1340 counterfactual instance pairs spanning 281 unique object classes, and a set of newly introduced metrics that quantify hallucination sensitivity under visually coherent scene edits. Experiments on HalluSegBench with state-of-the-art vision-language segmentation models reveal that vision-driven hallucinations are significantly more prevalent than label-driven ones, with models often persisting in false segmentation, highlighting the need for counterfactual reasoning to diagnose grounding fidelity.
Adversarial Counterfactual Visual Explanations
Counterfactual explanations and adversarial attacks have a related goal: flipping output labels with minimal perturbations regardless of their characteristics. Yet, adversarial attacks cannot be used directly in a counterfactual explanation perspective, as such perturbations are perceived as noise and not as actionable and understandable image modifications. Building on the robust learning literature, this paper proposes an elegant method to turn adversarial attacks into semantically meaningful perturbations, without modifying the classifiers to explain. The proposed approach hypothesizes that Denoising Diffusion Probabilistic Models are excellent regularizers for avoiding high-frequency and out-of-distribution perturbations when generating adversarial attacks. The paper's key idea is to build attacks through a diffusion model to polish them. This allows studying the target model regardless of its robustification level. Extensive experimentation shows the advantages of our counterfactual explanation approach over current State-of-the-Art in multiple testbeds.
Counterfactual Visual Explanations
In this work, we develop a technique to produce counterfactual visual explanations. Given a 'query' image I for which a vision system predicts class c, a counterfactual visual explanation identifies how I could change such that the system would output a different specified class c'. To do this, we select a 'distractor' image I' that the system predicts as class c' and identify spatial regions in I and I' such that replacing the identified region in I with the identified region in I' would push the system towards classifying I as c'. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples.
HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data
Multi-modal Large Language Models (MLLMs) tuned on machine-generated instruction-following data have demonstrated remarkable performance in various multi-modal understanding and generation tasks. However, the hallucinations inherent in machine-generated data, which could lead to hallucinatory outputs in MLLMs, remain under-explored. This work aims to investigate various hallucinations (i.e., object, relation, attribute hallucinations) and mitigate those hallucinatory toxicities in large-scale machine-generated visual instruction datasets. Drawing on the human ability to identify factual errors, we present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm. We use our framework to identify and eliminate hallucinations in the training data automatically. Interestingly, HalluciDoctor also indicates that spurious correlations arising from long-tail object co-occurrences contribute to hallucinations. Based on that, we execute counterfactual visual instruction expansion to balance data distribution, thereby enhancing MLLMs' resistance to hallucinations. Comprehensive experiments on hallucination evaluation benchmarks show that our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.The source code will be released at https://github.com/Yuqifan1117/HalluciDoctor.
GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing
Large Vision-Language Models (LVLMs) have been widely adopted in various applications; however, they exhibit significant gender biases. Existing benchmarks primarily evaluate gender bias at the demographic group level, neglecting individual fairness, which emphasizes equal treatment of similar individuals. This research gap limits the detection of discriminatory behaviors, as individual fairness offers a more granular examination of biases that group fairness may overlook. For the first time, this paper introduces the GenderBias-VL benchmark to evaluate occupation-related gender bias in LVLMs using counterfactual visual questions under individual fairness criteria. To construct this benchmark, we first utilize text-to-image diffusion models to generate occupation images and their gender counterfactuals. Subsequently, we generate corresponding textual occupation options by identifying stereotyped occupation pairs with high semantic similarity but opposite gender proportions in real-world statistics. This method enables the creation of large-scale visual question counterfactuals to expose biases in LVLMs, applicable in both multimodal and unimodal contexts through modifying gender attributes in specific modalities. Overall, our GenderBias-VL benchmark comprises 34,581 visual question counterfactual pairs, covering 177 occupations. Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs (\eg, LLaVA) and state-of-the-art commercial APIs, including GPT-4o and Gemini-Pro. Our findings reveal widespread gender biases in existing LVLMs. Our benchmark offers: (1) a comprehensive dataset for occupation-related gender bias evaluation; (2) an up-to-date leaderboard on LVLM biases; and (3) a nuanced understanding of the biases presented by these models. The dataset and code are available at the \href{https://genderbiasvl.github.io/{website}.}
VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models
Recent advancements in Multimodal Large Language Models (MLLMs) have extended their capabilities to video understanding. Yet, these models are often plagued by "hallucinations", where irrelevant or nonsensical content is generated, deviating from the actual video context. This work introduces VideoHallucer, the first comprehensive benchmark for hallucination detection in large video-language models (LVLMs). VideoHallucer categorizes hallucinations into two main types: intrinsic and extrinsic, offering further subcategories for detailed analysis, including object-relation, temporal, semantic detail, extrinsic factual, and extrinsic non-factual hallucinations. We adopt an adversarial binary VideoQA method for comprehensive evaluation, where pairs of basic and hallucinated questions are crafted strategically. By evaluating eleven LVLMs on VideoHallucer, we reveal that i) the majority of current models exhibit significant issues with hallucinations; ii) while scaling datasets and parameters improves models' ability to detect basic visual cues and counterfactuals, it provides limited benefit for detecting extrinsic factual hallucinations; iii) existing models are more adept at detecting facts than identifying hallucinations. As a byproduct, these analyses further instruct the development of our self-PEP framework, achieving an average of 5.38% improvement in hallucination resistance across all model architectures.
LANCE: Stress-testing Visual Models by Generating Language-guided Counterfactual Images
We propose an automated algorithm to stress-test a trained visual model by generating language-guided counterfactual test images (LANCE). Our method leverages recent progress in large language modeling and text-based image editing to augment an IID test set with a suite of diverse, realistic, and challenging test images without altering model weights. We benchmark the performance of a diverse set of pretrained models on our generated data and observe significant and consistent performance drops. We further analyze model sensitivity across different types of edits, and demonstrate its applicability at surfacing previously unknown class-level model biases in ImageNet.
Understanding Physical Dynamics with Counterfactual World Modeling
The ability to understand physical dynamics is critical for agents to act in the world. Here, we use Counterfactual World Modeling (CWM) to extract vision structures for dynamics understanding. CWM uses a temporally-factored masking policy for masked prediction of video data without annotations. This policy enables highly effective "counterfactual prompting" of the predictor, allowing a spectrum of visual structures to be extracted from a single pre-trained predictor without finetuning on annotated datasets. We demonstrate that these structures are useful for physical dynamics understanding, allowing CWM to achieve the state-of-the-art performance on the Physion benchmark.
Counterfactual Identifiability of Bijective Causal Models
We study counterfactual identifiability in causal models with bijective generation mechanisms (BGM), a class that generalizes several widely-used causal models in the literature. We establish their counterfactual identifiability for three common causal structures with unobserved confounding, and propose a practical learning method that casts learning a BGM as structured generative modeling. Learned BGMs enable efficient counterfactual estimation and can be obtained using a variety of deep conditional generative models. We evaluate our techniques in a visual task and demonstrate its application in a real-world video streaming simulation task.
DeFacto: Counterfactual Thinking with Images for Enforcing Evidence-Grounded and Faithful Reasoning
Recent advances in multimodal language models (MLLMs) have achieved remarkable progress in vision-language reasoning, especially with the emergence of "thinking with images," which integrates explicit visual steps into the reasoning process. While this paradigm strengthens image-based reasoning, a significant challenge remains: models may arrive at correct answers by relying on irrelevant or spurious regions, driven by prior knowledge or dataset biases. Even when the answer is correct, flawed reasoning indicates that the model has not truly understood the image, highlighting the critical importance of reasoning fidelity in multimodal tasks. To address this issue, we propose DeFacto, a counterfactual reasoning framework that jointly enforces accurate answering and faithful reasoning. A key component of our approach is the design of three complementary training paradigms: (i) positive, (ii) counterfactual, and (iii) random-masking. To enable these paradigms, we develop a pipeline that automatically localizes question-relevant evidence and constructs positive, counterfactual, and random variants, resulting in a dataset of about 100k images. Building on this framework, we train multimodal language models with GRPO-based reinforcement learning, where we design three complementary rewards to guide the model toward accurate answering and evidence-grounded reasoning. Experiments on diverse benchmarks demonstrate that DeFacto substantially improves both answer accuracy and reasoning faithfulness, establishing a stronger foundation for interpretable multimodal reasoning. The code is available on GitHub and the dataset is released on HuggingFace.
CAST: Counterfactual Labels Improve Instruction Following in Vision-Language-Action Models
Generalist robots should be able to understand and follow user instructions, but current vision-language-action (VLA) models struggle with following fine-grained commands despite providing a powerful architecture for mapping open-vocabulary natural language instructions to robot actions. One cause for this is a lack of semantic diversity and language grounding in existing robot datasets and, specifically, a lack of fine-grained task diversity for similar observations. To address this, we present a novel method to augment existing robot datasets by leveraging vision language models to create counterfactual labels. Our method improves the language-following capabilities of VLAs by increasing the diversity and granularity of language grounding for robot datasets by generating counterfactual language and actions. We evaluate the resulting model's ability to follow language instructions, ranging from simple object-centric commands to complex referential tasks, by conducting visual language navigation experiments in 3 different indoor and outdoor environments. Our experiments demonstrate that counterfactual relabeling, without any additional data collection, significantly improves instruction-following in VLA policies, making them competitive with state-of-the-art methods and increasing success rate by 27% on navigation tasks.
SCENIR: Visual Semantic Clarity through Unsupervised Scene Graph Retrieval
Despite the dominance of convolutional and transformer-based architectures in image-to-image retrieval, these models are prone to biases arising from low-level visual features, such as color. Recognizing the lack of semantic understanding as a key limitation, we propose a novel scene graph-based retrieval framework that emphasizes semantic content over superficial image characteristics. Prior approaches to scene graph retrieval predominantly rely on supervised Graph Neural Networks (GNNs), which require ground truth graph pairs driven from image captions. However, the inconsistency of caption-based supervision stemming from variable text encodings undermine retrieval reliability. To address these, we present SCENIR, a Graph Autoencoder-based unsupervised retrieval framework, which eliminates the dependence on labeled training data. Our model demonstrates superior performance across metrics and runtime efficiency, outperforming existing vision-based, multimodal, and supervised GNN approaches. We further advocate for Graph Edit Distance (GED) as a deterministic and robust ground truth measure for scene graph similarity, replacing the inconsistent caption-based alternatives for the first time in image-to-image retrieval evaluation. Finally, we validate the generalizability of our method by applying it to unannotated datasets via automated scene graph generation, while substantially contributing in advancing state-of-the-art in counterfactual image retrieval.
See or Guess: Counterfactually Regularized Image Captioning
Image captioning, which generates natural language descriptions of the visual information in an image, is a crucial task in vision-language research. Previous models have typically addressed this task by aligning the generative capabilities of machines with human intelligence through statistical fitting of existing datasets. While effective for normal images, they may struggle to accurately describe those where certain parts of the image are obscured or edited, unlike humans who excel in such cases. These weaknesses they exhibit, including hallucinations and limited interpretability, often hinder performance in scenarios with shifted association patterns. In this paper, we present a generic image captioning framework that employs causal inference to make existing models more capable of interventional tasks, and counterfactually explainable. Our approach includes two variants leveraging either total effect or natural direct effect. Integrating them into the training process enables models to handle counterfactual scenarios, increasing their generalizability. Extensive experiments on various datasets show that our method effectively reduces hallucinations and improves the model's faithfulness to images, demonstrating high portability across both small-scale and large-scale image-to-text models. The code is available at https://github.com/Aman-4-Real/See-or-Guess.
ORBIT: An Object Property Reasoning Benchmark for Visual Inference Tasks
While vision-language models (VLMs) have made remarkable progress on many popular visual question answering (VQA) benchmarks, it remains unclear whether they abstract and reason over depicted objects. Inspired by human object categorisation, object property reasoning involves identifying and recognising low-level details and higher-level abstractions. While current VQA benchmarks consider a limited set of object property attributes like size, they typically blend perception and reasoning, and lack representativeness in terms of reasoning and image categories. To this end, we introduce a systematic evaluation framework with images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions driven by prior work on commonsense reasoning. We develop a procedure to instantiate this benchmark into ORBIT, a multi-level reasoning VQA benchmark for object properties comprising 360 images paired with a total of 1,080 count-based questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations compared to humans, with the best-performing model only reaching 40\% accuracy. VLMs struggle particularly with realistic (photographic) images, counterfactual reasoning about physical and functional properties, and higher counts. ORBIT points to the need to develop methods for scalable benchmarking, generalize annotation guidelines, and explore additional reasoning VLMs. We make the ORBIT benchmark and the experimental code available to support such endeavors.
CausalVLBench: Benchmarking Visual Causal Reasoning in Large Vision-Language Models
Large language models (LLMs) have shown remarkable ability in various language tasks, especially with their emergent in-context learning capability. Extending LLMs to incorporate visual inputs, large vision-language models (LVLMs) have shown impressive performance in tasks such as recognition and visual question answering (VQA). Despite increasing interest in the utility of LLMs in causal reasoning tasks such as causal discovery and counterfactual reasoning, there has been relatively little work showcasing the abilities of LVLMs on visual causal reasoning tasks. We take this opportunity to formally introduce a comprehensive causal reasoning benchmark for multi-modal in-context learning from LVLMs. Our CausalVLBench encompasses three representative tasks: causal structure inference, intervention target prediction, and counterfactual prediction. We evaluate the ability of state-of-the-art open-source LVLMs on our causal reasoning tasks across three causal representation learning datasets and demonstrate their fundamental strengths and weaknesses. We hope that our benchmark elucidates the drawbacks of existing vision-language models and motivates new directions and paradigms in improving the visual causal reasoning abilities of LVLMs.
Towards Interpretable Counterfactual Generation via Multimodal Autoregression
Counterfactual medical image generation enables clinicians to explore clinical hypotheses, such as predicting disease progression, facilitating their decision-making. While existing methods can generate visually plausible images from disease progression prompts, they produce silent predictions that lack interpretation to verify how the generation reflects the hypothesized progression -- a critical gap for medical applications that require traceable reasoning. In this paper, we propose Interpretable Counterfactual Generation (ICG), a novel task requiring the joint generation of counterfactual images that reflect the clinical hypothesis and interpretation texts that outline the visual changes induced by the hypothesis. To enable ICG, we present ICG-CXR, the first dataset pairing longitudinal medical images with hypothetical progression prompts and textual interpretations. We further introduce ProgEmu, an autoregressive model that unifies the generation of counterfactual images and textual interpretations. We demonstrate the superiority of ProgEmu in generating progression-aligned counterfactuals and interpretations, showing significant potential in enhancing clinical decision support and medical education. Project page: https://progemu.github.io.
What if...?: Counterfactual Inception to Mitigate Hallucination Effects in Large Multimodal Models
This paper presents a way of enhancing the reliability of Large Multimodal Models (LMMs) in addressing hallucination effects, where models generate incorrect or unrelated responses. Without additional instruction tuning paradigm, we introduce Counterfactual Inception, a novel method that implants counterfactual thoughts into LMMs using carefully chosen, misaligned counterfactual keywords. This method is grounded in the concept of counterfactual thinking, a cognitive process where humans consider alternative realities and outcomes. By applying this human-like reasoning mechanism to LMMs, we aim to reduce hallucination effects and improve the models' trustworthiness. We also propose Dual-modality Verification Process (DVP), a rigorous framework for selecting optimal counterfactual keywords to trigger counterfactual thinking into LMMs, concurrently considering visual and linguistic context. Our extensive experiments across various LMMs, including both open-source and proprietary models, corroborate that our method significantly mitigates hallucination phenomena across different datasets.
Grounding or Guessing? Visual Signals for Detecting Hallucinations in Sign Language Translation
Hallucination, where models generate fluent text unsupported by visual evidence, remains a major flaw in vision-language models and is particularly critical in sign language translation (SLT). In SLT, meaning depends on precise grounding in video, and gloss-free models are especially vulnerable because they map continuous signer movements directly into natural language without intermediate gloss supervision that serves as alignment. We argue that hallucinations arise when models rely on language priors rather than visual input. To capture this, we propose a token-level reliability measure that quantifies how much the decoder uses visual information. Our method combines feature-based sensitivity, which measures internal changes when video is masked, with counterfactual signals, which capture probability differences between clean and altered video inputs. These signals are aggregated into a sentence-level reliability score, providing a compact and interpretable measure of visual grounding. We evaluate the proposed measure on two SLT benchmarks (PHOENIX-2014T and CSL-Daily) with both gloss-based and gloss-free models. Our results show that reliability predicts hallucination rates, generalizes across datasets and architectures, and decreases under visual degradations. Beyond these quantitative trends, we also find that reliability distinguishes grounded tokens from guessed ones, allowing risk estimation without references; when combined with text-based signals (confidence, perplexity, or entropy), it further improves hallucination risk estimation. Qualitative analysis highlights why gloss-free models are more susceptible to hallucinations. Taken together, our findings establish reliability as a practical and reusable tool for diagnosing hallucinations in SLT, and lay the groundwork for more robust hallucination detection in multimodal generation.
ACQUIRED: A Dataset for Answering Counterfactual Questions In Real-Life Videos
Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It involves predicting the outcomes of hypothetical circumstances based on vision and language inputs, which enables AI models to learn from failures and explore hypothetical scenarios. Despite its importance, there are only a few datasets targeting the counterfactual reasoning abilities of multimodal models. Among them, they only cover reasoning over synthetic environments or specific types of events (e.g. traffic collisions), making them hard to reliably benchmark the model generalization ability in diverse real-world scenarios and reasoning dimensions. To overcome these limitations, we develop a video question answering dataset, ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints, which ensures a focus on real-world diversity. In addition, each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal, which can comprehensively evaluate the model counterfactual abilities along multiple aspects. We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap (>13%) between models and humans. The findings suggest that multimodal counterfactual reasoning remains an open challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future research in this direction.
VLind-Bench: Measuring Language Priors in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have demonstrated outstanding performance across various multimodal tasks. However, they suffer from a problem known as language prior, where responses are generated based solely on textual patterns while disregarding image information. Addressing the issue of language prior is crucial, as it can lead to undesirable biases or hallucinations when dealing with images that are out of training distribution. Despite its importance, current methods for accurately measuring language priors in LVLMs are poorly studied. Although existing benchmarks based on counterfactual or out-of-distribution images can partially be used to measure language priors, they fail to disentangle language priors from other confounding factors. To this end, we propose a new benchmark called VLind-Bench, which is the first benchmark specifically designed to measure the language priors, or blindness, of LVLMs. It not only includes tests on counterfactual images to assess language priors but also involves a series of tests to evaluate more basic capabilities such as commonsense knowledge, visual perception, and commonsense biases. For each instance in our benchmark, we ensure that all these basic tests are passed before evaluating the language priors, thereby minimizing the influence of other factors on the assessment. The evaluation and analysis of recent LVLMs in our benchmark reveal that almost all models exhibit a significant reliance on language priors, presenting a strong challenge in the field.
Mitigating Modality Prior-Induced Hallucinations in Multimodal Large Language Models via Deciphering Attention Causality
Multimodal Large Language Models (MLLMs) have emerged as a central focus in both industry and academia, but often suffer from biases introduced by visual and language priors, which can lead to multimodal hallucination. These biases arise from the visual encoder and the Large Language Model (LLM) backbone, affecting the attention mechanism responsible for aligning multimodal inputs. Existing decoding-based mitigation methods focus on statistical correlations and overlook the causal relationships between attention mechanisms and model output, limiting their effectiveness in addressing these biases. To tackle this issue, we propose a causal inference framework termed CausalMM that applies structural causal modeling to MLLMs, treating modality priors as a confounder between attention mechanisms and output. Specifically, by employing backdoor adjustment and counterfactual reasoning at both the visual and language attention levels, our method mitigates the negative effects of modality priors and enhances the alignment of MLLM's inputs and outputs, with a maximum score improvement of 65.3% on 6 VLind-Bench indicators and 164 points on MME Benchmark compared to conventional methods. Extensive experiments validate the effectiveness of our approach while being a plug-and-play solution. Our code is available at: https://github.com/The-Martyr/CausalMM
MME-CC: A Challenging Multi-Modal Evaluation Benchmark of Cognitive Capacity
As reasoning models scale rapidly, the essential role of multimodality in human cognition has come into sharp relief, driving a growing need to probe vision-centric cognitive behaviors. Yet, existing multimodal benchmarks either overemphasize textual reasoning or fall short of systematically capturing vision-centric cognitive behaviors, leaving the cognitive capacity of MLLMs insufficiently assessed. To address this limitation, we introduce MME-CC (Multi-Modal Evaluation benchmark of Cognitive Capacity), a vision-grounded benchmark that organizes 11 representative reasoning tasks into three fundamental categories of visual information: spatial, geometric, and knowledge-based reasoning, and provides fine-grained analyses of MLLMs' cognitive capacity across these dimensions. Based on MME-CC, we conduct extensive experiments over 16 representative MLLMs. Our study reveals that closed-source models currently lead overall (e.g., 42.66 for Gemini-2.5-Pro vs. 30.45 for GLM-4.5V), while spatial and geometric reasoning remain broadly weak (less than or equal to 30%). We further identify common error patterns, including orientation mistakes, fragile cross-view identity persistence, and poor adherence to counterfactual instructions, and observe that Chain-of-Thought typically follows a three-stage process (extract -> reason -> verify) with heavy reliance on visual extraction. We hope this work catalyzes a shift toward treating the cognitive capacity of MLLMs as central to both evaluation and model design.
HourVideo: 1-Hour Video-Language Understanding
We present HourVideo, a benchmark dataset for hour-long video-language understanding. Our dataset consists of a novel task suite comprising summarization, perception (recall, tracking), visual reasoning (spatial, temporal, predictive, causal, counterfactual), and navigation (room-to-room, object retrieval) tasks. HourVideo includes 500 manually curated egocentric videos from the Ego4D dataset, spanning durations of 20 to 120 minutes, and features 12,976 high-quality, five-way multiple-choice questions. Benchmarking results reveal that multimodal models, including GPT-4 and LLaVA-NeXT, achieve marginal improvements over random chance. In stark contrast, human experts significantly outperform the state-of-the-art long-context multimodal model, Gemini Pro 1.5 (85.0% vs. 37.3%), highlighting a substantial gap in multimodal capabilities. Our benchmark, evaluation toolkit, prompts, and documentation are available at https://hourvideo.stanford.edu
OCTET: Object-aware Counterfactual Explanations
Nowadays, deep vision models are being widely deployed in safety-critical applications, e.g., autonomous driving, and explainability of such models is becoming a pressing concern. Among explanation methods, counterfactual explanations aim to find minimal and interpretable changes to the input image that would also change the output of the model to be explained. Such explanations point end-users at the main factors that impact the decision of the model. However, previous methods struggle to explain decision models trained on images with many objects, e.g., urban scenes, which are more difficult to work with but also arguably more critical to explain. In this work, we propose to tackle this issue with an object-centric framework for counterfactual explanation generation. Our method, inspired by recent generative modeling works, encodes the query image into a latent space that is structured in a way to ease object-level manipulations. Doing so, it provides the end-user with control over which search directions (e.g., spatial displacement of objects, style modification, etc.) are to be explored during the counterfactual generation. We conduct a set of experiments on counterfactual explanation benchmarks for driving scenes, and we show that our method can be adapted beyond classification, e.g., to explain semantic segmentation models. To complete our analysis, we design and run a user study that measures the usefulness of counterfactual explanations in understanding a decision model. Code is available at https://github.com/valeoai/OCTET.
Rethinking Counterfactual Data Augmentation Under Confounding
Counterfactual data augmentation has recently emerged as a method to mitigate confounding biases in the training data for a machine learning model. These biases, such as spurious correlations, arise due to various observed and unobserved confounding variables in the data generation process. In this paper, we formally analyze how confounding biases impact downstream classifiers and present a causal viewpoint to the solutions based on counterfactual data augmentation. We explore how removing confounding biases serves as a means to learn invariant features, ultimately aiding in generalization beyond the observed data distribution. Additionally, we present a straightforward yet powerful algorithm for generating counterfactual images, which effectively mitigates the influence of confounding effects on downstream classifiers. Through experiments on MNIST variants and the CelebA datasets, we demonstrate the effectiveness and practicality of our approach.
VISION: Robust and Interpretable Code Vulnerability Detection Leveraging Counterfactual Augmentation
Automated detection of vulnerabilities in source code is an essential cybersecurity challenge, underpinning trust in digital systems and services. Graph Neural Networks (GNNs) have emerged as a promising approach as they can learn structural and logical code relationships in a data-driven manner. However, their performance is severely constrained by training data imbalances and label noise. GNNs often learn 'spurious' correlations from superficial code similarities, producing detectors that fail to generalize well to unseen real-world data. In this work, we propose a unified framework for robust and interpretable vulnerability detection, called VISION, to mitigate spurious correlations by systematically augmenting a counterfactual training dataset. Counterfactuals are samples with minimal semantic modifications but opposite labels. Our framework includes: (i) generating counterfactuals by prompting a Large Language Model (LLM); (ii) targeted GNN training on paired code examples with opposite labels; and (iii) graph-based interpretability to identify the crucial code statements relevant for vulnerability predictions while ignoring spurious ones. We find that VISION reduces spurious learning and enables more robust, generalizable detection, improving overall accuracy (from 51.8% to 97.8%), pairwise contrast accuracy (from 4.5% to 95.8%), and worst-group accuracy (from 0.7% to 85.5%) on the Common Weakness Enumeration (CWE)-20 vulnerability. We further demonstrate gains using proposed metrics: intra-class attribution variance, inter-class attribution distance, and node score dependency. We also release CWE-20-CFA, a benchmark of 27,556 functions (real and counterfactual) from the high-impact CWE-20 category. Finally, VISION advances transparent and trustworthy AI-based cybersecurity systems through interactive visualization for human-in-the-loop analysis.
ObjectDrop: Bootstrapping Counterfactuals for Photorealistic Object Removal and Insertion
Diffusion models have revolutionized image editing but often generate images that violate physical laws, particularly the effects of objects on the scene, e.g., occlusions, shadows, and reflections. By analyzing the limitations of self-supervised approaches, we propose a practical solution centered on a counterfactual dataset. Our method involves capturing a scene before and after removing a single object, while minimizing other changes. By fine-tuning a diffusion model on this dataset, we are able to not only remove objects but also their effects on the scene. However, we find that applying this approach for photorealistic object insertion requires an impractically large dataset. To tackle this challenge, we propose bootstrap supervision; leveraging our object removal model trained on a small counterfactual dataset, we synthetically expand this dataset considerably. Our approach significantly outperforms prior methods in photorealistic object removal and insertion, particularly at modeling the effects of objects on the scene.
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.
Zero-shot Model Diagnosis
When it comes to deploying deep vision models, the behavior of these systems must be explicable to ensure confidence in their reliability and fairness. A common approach to evaluate deep learning models is to build a labeled test set with attributes of interest and assess how well it performs. However, creating a balanced test set (i.e., one that is uniformly sampled over all the important traits) is often time-consuming, expensive, and prone to mistakes. The question we try to address is: can we evaluate the sensitivity of deep learning models to arbitrary visual attributes without an annotated test set? This paper argues the case that Zero-shot Model Diagnosis (ZOOM) is possible without the need for a test set nor labeling. To avoid the need for test sets, our system relies on a generative model and CLIP. The key idea is enabling the user to select a set of prompts (relevant to the problem) and our system will automatically search for semantic counterfactual images (i.e., synthesized images that flip the prediction in the case of a binary classifier) using the generative model. We evaluate several visual tasks (classification, key-point detection, and segmentation) in multiple visual domains to demonstrate the viability of our methodology. Extensive experiments demonstrate that our method is capable of producing counterfactual images and offering sensitivity analysis for model diagnosis without the need for a test set.
Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations
We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.
Reasoning is All You Need for Video Generalization: A Counterfactual Benchmark with Sub-question Evaluation
Counterfactual reasoning is crucial for robust video understanding but remains underexplored in existing multimodal benchmarks. In this paper, we introduce COVER (\underline{CO}unterfactual \underline{V}id\underline{E}o \underline{R}easoning), a multidimensional multimodal benchmark that systematically evaluates MLLMs across the abstract-concrete and perception-cognition dimensions. Beyond prior multimodal benchmarks, COVER decomposes complex queries into structured sub-questions, enabling fine-grained reasoning analysis. Experiments on commercial and open-source models reveal a strong correlation between sub-question accuracy and counterfactual reasoning performance, highlighting the role of structured inference in video understanding. Furthermore, our results suggest a key insight: enhancing the reasoning capability of models is essential for improving the robustness of video understanding. COVER establishes a new standard for assessing MLLMs' logical reasoning abilities in dynamic environments. Our work is available at https://github.com/gongyifan-hash/COVER-Benchmark.
Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we first conduct experiments on a synthetic dataset of counterfactuals, allowing for a direct comparison between classifier predictions based on ground truth counterfactuals (obtained through explicit text interventions) and our counterfactuals, derived through interventions in the representation space. Second, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
Learning to Explain: A Model-Agnostic Framework for Explaining Black Box Models
We present Learning to Explain (LTX), a model-agnostic framework designed for providing post-hoc explanations for vision models. The LTX framework introduces an "explainer" model that generates explanation maps, highlighting the crucial regions that justify the predictions made by the model being explained. To train the explainer, we employ a two-stage process consisting of initial pretraining followed by per-instance finetuning. During both stages of training, we utilize a unique configuration where we compare the explained model's prediction for a masked input with its original prediction for the unmasked input. This approach enables the use of a novel counterfactual objective, which aims to anticipate the model's output using masked versions of the input image. Importantly, the LTX framework is not restricted to a specific model architecture and can provide explanations for both Transformer-based and convolutional models. Through our evaluations, we demonstrate that LTX significantly outperforms the current state-of-the-art in explainability across various metrics.
Vinoground: Scrutinizing LMMs over Dense Temporal Reasoning with Short Videos
There has been growing sentiment recently that modern large multimodal models (LMMs) have addressed most of the key challenges related to short video comprehension. As a result, both academia and industry are gradually shifting their attention towards the more complex challenges posed by understanding long-form videos. However, is this really the case? Our studies indicate that LMMs still lack many fundamental reasoning capabilities even when dealing with short videos. We introduce Vinoground, a temporal counterfactual LMM evaluation benchmark encompassing 1000 short and natural video-caption pairs. We demonstrate that existing LMMs severely struggle to distinguish temporal differences between different actions and object transformations. For example, the best model GPT-4o only obtains ~50% on our text and video scores, showing a large gap compared to the human baseline of ~90%. All open-source multimodal models and CLIP-based models perform much worse, producing mostly random chance performance. Through this work, we shed light onto the fact that temporal reasoning in short videos is a problem yet to be fully solved. The dataset and evaluation code are available at https://vinoground.github.io.
TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models
Text-to-Image (TTI) generative models have shown great progress in the past few years in terms of their ability to generate complex and high-quality imagery. At the same time, these models have been shown to suffer from harmful biases, including exaggerated societal biases (e.g., gender, ethnicity), as well as incidental correlations that limit such a model's ability to generate more diverse imagery. In this paper, we propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt, using counterfactual reasoning. Unlike other works that evaluate generated images on a predefined set of bias axes, our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases. In addition, we complement quantitative scores with post-hoc explanations in terms of semantic concepts in the images generated. We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts, as well as the intersectionality between different biases for any given prompt. We perform extensive user studies to illustrate that the results of our method and analysis are consistent with human judgements.
Taming generative video models for zero-shot optical flow extraction
Extracting optical flow from videos remains a core computer vision problem. Motivated by the success of large general-purpose models, we ask whether frozen self-supervised video models trained only for future frame prediction can be prompted, without fine-tuning, to output flow. Prior work reading out depth or illumination from video generators required fine-tuning, which is impractical for flow where labels are scarce and synthetic datasets suffer from a sim-to-real gap. Inspired by the Counterfactual World Model (CWM) paradigm, which can obtain point-wise correspondences by injecting a small tracer perturbation into a next-frame predictor and tracking its propagation, we extend this idea to generative video models. We explore several popular architectures and find that successful zero-shot flow extraction in this manner is aided by three model properties: (1) distributional prediction of future frames (avoiding blurry or noisy outputs); (2) factorized latents that treat each spatio-temporal patch independently; and (3) random-access decoding that can condition on any subset of future pixels. These properties are uniquely present in the recent Local Random Access Sequence (LRAS) architecture. Building on LRAS, we propose KL-tracing: a novel test-time procedure that injects a localized perturbation into the first frame, rolls out the model one step, and computes the Kullback-Leibler divergence between perturbed and unperturbed predictive distributions. Without any flow-specific fine-tuning, our method outperforms state-of-the-art models on real-world TAP-Vid DAVIS dataset (16.6% relative improvement for endpoint error) and synthetic TAP-Vid Kubric (4.7% relative improvement). Our results indicate that counterfactual prompting of controllable generative video models is a scalable and effective alternative to supervised or photometric-loss approaches for high-quality flow.
CounterCurate: Enhancing Physical and Semantic Visio-Linguistic Compositional Reasoning via Counterfactual Examples
We propose CounterCurate, a framework to comprehensively improve the visio-linguistic compositional reasoning capability for both contrastive and generative multimodal models. In particular, we identify two under-explored critical problems: the neglect of the physically grounded reasoning (counting and position understanding) and the potential of using highly capable text and image generation models for semantic counterfactual fine-tuning. Our work pioneers an approach that addresses these gaps. We first spotlight the near-chance performance of multimodal models like CLIP and LLaVA in physically grounded compositional reasoning. We then apply simple data augmentation using a grounded image generation model, GLIGEN, to generate finetuning data, resulting in significant performance improvements: +33% and +37% for CLIP and LLaVA, respectively, on our newly curated Flickr30k-Positions benchmark. Moreover, we exploit the capabilities of high-performing text generation and image generation models, specifically GPT-4V and DALLE-3, to curate challenging semantic counterfactuals, thereby further enhancing compositional reasoning capabilities on benchmarks such as SugarCrepe, where CounterCurate outperforms GPT-4V.
Counterfactual Plans under Distributional Ambiguity
Counterfactual explanations are attracting significant attention due to the flourishing applications of machine learning models in consequential domains. A counterfactual plan consists of multiple possibilities to modify a given instance so that the model's prediction will be altered. As the predictive model can be updated subject to the future arrival of new data, a counterfactual plan may become ineffective or infeasible with respect to the future values of the model parameters. In this work, we study the counterfactual plans under model uncertainty, in which the distribution of the model parameters is partially prescribed using only the first- and second-moment information. First, we propose an uncertainty quantification tool to compute the lower and upper bounds of the probability of validity for any given counterfactual plan. We then provide corrective methods to adjust the counterfactual plan to improve the validity measure. The numerical experiments validate our bounds and demonstrate that our correction increases the robustness of the counterfactual plans in different real-world datasets.
Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
ViLMA: A Zero-Shot Benchmark for Linguistic and Temporal Grounding in Video-Language Models
With the ever-increasing popularity of pretrained Video-Language Models (VidLMs), there is a pressing need to develop robust evaluation methodologies that delve deeper into their visio-linguistic capabilities. To address this challenge, we present ViLMA (Video Language Model Assessment), a task-agnostic benchmark that places the assessment of fine-grained capabilities of these models on a firm footing. Task-based evaluations, while valuable, fail to capture the complexities and specific temporal aspects of moving images that VidLMs need to process. Through carefully curated counterfactuals, ViLMA offers a controlled evaluation suite that sheds light on the true potential of these models, as well as their performance gaps compared to human-level understanding. ViLMA also includes proficiency tests, which assess basic capabilities deemed essential to solving the main counterfactual tests. We show that current VidLMs' grounding abilities are no better than those of vision-language models which use static images. This is especially striking once the performance on proficiency tests is factored in. Our benchmark serves as a catalyst for future research on VidLMs, helping to highlight areas that still need to be explored.
Counterfactual Probing for Hallucination Detection and Mitigation in Large Language Models
Large Language Models have demonstrated remarkable capabilities across diverse tasks, yet they frequently generate hallucinations outputs that are fluent but factually incorrect or unsupported. We propose Counterfactual Probing, a novel approach for detecting and mitigating hallucinations in LLM outputs. Our method dynamically generates counterfactual statements that appear plausible but contain subtle factual errors, then evaluates the model's sensitivity to these perturbations. We hypothesize that genuine knowledge exhibits robustness to counterfactual variations, while hallucinated content shows inconsistent confidence patterns when confronted with plausible alternatives. Our comprehensive evaluation on TruthfulQA, factual statement datasets, and curated hallucination examples demonstrates that counterfactual probing achieves superior detection performance compared to baseline methods, while our adaptive mitigation strategies reduce hallucination scores by an average of 24.5%. The approach requires no model retraining and can be integrated into existing LLM pipelines as a realtime verification mechanism.
Do CLIPs Always Generalize Better than ImageNet Models?
Large vision language models, such as CLIPs, have revolutionized modern machine learning. CLIPs have demonstrated great generalizability under distribution shifts, supported by an increasing body of literature. However, the evaluation datasets for CLIPs are variations primarily designed for ImageNet benchmarks, which may not fully reflect the extent to which CLIPs, e.g., pre-trained on LAION, robust to spurious correlations. To bridge the gap, we collect a real-world dataset called CounterAnimal that contains realistic spurious features found in animal photos. CounterAnimal consists of a) the common group: comprising animals on common backgrounds, and b) the counter group: including animals on unusual backgrounds. The performance drops from the common to counter groups quantify the reliance of models on spurious features (i.e., backgrounds) to predict the animals. We find that CLIPs trained on either LAION or the OpenAI data exhibit notable performance drops on the counter group. Surprisingly, we observe that single-modal models trained on ImageNet are more robust than CLIPs. We provide both theoretical and empirical explanations for why CLIPs still learn spurious features. Our findings suggest that distribution shifts remain an open problem for CLIPs, and one needs to be cautious about test setups when evaluating foundation models pre-trained on a significantly different scale and distribution.
ViG-Bias: Visually Grounded Bias Discovery and Mitigation
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
Optimal Counterfactual Explanations for Scorecard modelling
Counterfactual explanations is one of the post-hoc methods used to provide explainability to machine learning models that have been attracting attention in recent years. Most examples in the literature, address the problem of generating post-hoc explanations for black-box machine learning models after the rejection of a loan application. In contrast, in this work, we investigate mathematical programming formulations for scorecard models, a type of interpretable model predominant within the banking industry for lending. The proposed mixed-integer programming formulations combine objective functions to ensure close, realistic and sparse counterfactuals using multi-objective optimization techniques for a binary, probability or continuous outcome. Moreover, we extend these formulations to generate multiple optimal counterfactuals simultaneously while guaranteeing diversity. Experiments on two real-world datasets confirm that the presented approach can generate optimal diverse counterfactuals addressing desired properties with assumable CPU times for practice use.
I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews
Counterfactual statements describe events that did not or cannot take place. We consider the problem of counterfactual detection (CFD) in product reviews. For this purpose, we annotate a multilingual CFD dataset from Amazon product reviews covering counterfactual statements written in English, German, and Japanese languages. The dataset is unique as it contains counterfactuals in multiple languages, covers a new application area of e-commerce reviews, and provides high quality professional annotations. We train CFD models using different text representation methods and classifiers. We find that these models are robust against the selectional biases introduced due to cue phrase-based sentence selection. Moreover, our CFD dataset is compatible with prior datasets and can be merged to learn accurate CFD models. Applying machine translation on English counterfactual examples to create multilingual data performs poorly, demonstrating the language-specificity of this problem, which has been ignored so far.
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine learning based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Investigating and Mitigating Object Hallucinations in Pretrained Vision-Language (CLIP) Models
Large Vision-Language Models (LVLMs) have achieved impressive performance, yet research has pointed out a serious issue with object hallucinations within these models. However, there is no clear conclusion as to which part of the model these hallucinations originate from. In this paper, we present an in-depth investigation into the object hallucination problem specifically within the CLIP model, which serves as the backbone for many state-of-the-art vision-language systems. We unveil that even in isolation, the CLIP model is prone to object hallucinations, suggesting that the hallucination problem is not solely due to the interaction between vision and language modalities. To address this, we propose a counterfactual data augmentation method by creating negative samples with a variety of hallucination issues. We demonstrate that our method can effectively mitigate object hallucinations for CLIP model, and we show the the enhanced model can be employed as a visual encoder, effectively alleviating the object hallucination issue in LVLMs.
High Fidelity Image Counterfactuals with Probabilistic Causal Models
We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.
Point Prompting: Counterfactual Tracking with Video Diffusion Models
Trackers and video generators solve closely related problems: the former analyze motion, while the latter synthesize it. We show that this connection enables pretrained video diffusion models to perform zero-shot point tracking by simply prompting them to visually mark points as they move over time. We place a distinctively colored marker at the query point, then regenerate the rest of the video from an intermediate noise level. This propagates the marker across frames, tracing the point's trajectory. To ensure that the marker remains visible in this counterfactual generation, despite such markers being unlikely in natural videos, we use the unedited initial frame as a negative prompt. Through experiments with multiple image-conditioned video diffusion models, we find that these "emergent" tracks outperform those of prior zero-shot methods and persist through occlusions, often obtaining performance that is competitive with specialized self-supervised models.
CounterBench: A Benchmark for Counterfactuals Reasoning in Large Language Models
Counterfactual reasoning is widely recognized as one of the most challenging and intricate aspects of causality in artificial intelligence. In this paper, we evaluate the performance of large language models (LLMs) in counterfactual reasoning. In contrast to previous studies that primarily focus on commonsense causal reasoning, where LLMs often rely on prior knowledge for inference, we specifically assess their ability to perform counterfactual inference using a set of formal rules. To support this evaluation, we introduce a new benchmark dataset, CounterBench, comprising 1K counterfactual reasoning questions. The dataset is designed with varying levels of difficulty, diverse causal graph structures, distinct types of counterfactual questions, and multiple nonsensical name variants. Our experiments demonstrate that counterfactual reasoning poses a significant challenge for LLMs, with most models performing at levels comparable to random guessing. To enhance LLM's counterfactual reasoning ability, we propose a novel reasoning paradigm, CoIn, which guides LLMs through iterative reasoning and backtracking to systematically explore counterfactual solutions. Experimental results show that our method significantly improves LLM performance on counterfactual reasoning tasks and consistently enhances performance across different LLMs.Our dataset is available at https://huggingface.co/datasets/CounterBench/CounterBench.
IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions
Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual presupposition via an "if" clause. For example, if Los Angeles was on the east coast of the U.S., what would be the time difference between Los Angeles and Paris? Such questions require models to go beyond retrieving direct factual knowledge from the Web: they must identify the right information to retrieve and reason about an imagined situation that may even go against the facts built into their parameters. The IfQA dataset contains over 3,800 questions that were annotated annotated by crowdworkers on relevant Wikipedia passages. Empirical analysis reveals that the IfQA dataset is highly challenging for existing open-domain QA methods, including supervised retrieve-then-read pipeline methods (EM score 36.2), as well as recent few-shot approaches such as chain-of-thought prompting with GPT-3 (EM score 27.4). The unique challenges posed by the IfQA benchmark will push open-domain QA research on both retrieval and counterfactual reasoning fronts.
Counterfactual Explanations for Face Forgery Detection via Adversarial Removal of Artifacts
Highly realistic AI generated face forgeries known as deepfakes have raised serious social concerns. Although DNN-based face forgery detection models have achieved good performance, they are vulnerable to latest generative methods that have less forgery traces and adversarial attacks. This limitation of generalization and robustness hinders the credibility of detection results and requires more explanations. In this work, we provide counterfactual explanations for face forgery detection from an artifact removal perspective. Specifically, we first invert the forgery images into the StyleGAN latent space, and then adversarially optimize their latent representations with the discrimination supervision from the target detection model. We verify the effectiveness of the proposed explanations from two aspects: (1) Counterfactual Trace Visualization: the enhanced forgery images are useful to reveal artifacts by visually contrasting the original images and two different visualization methods; (2) Transferable Adversarial Attacks: the adversarial forgery images generated by attacking the detection model are able to mislead other detection models, implying the removed artifacts are general. Extensive experiments demonstrate that our method achieves over 90% attack success rate and superior attack transferability. Compared with naive adversarial noise methods, our method adopts both generative and discriminative model priors, and optimize the latent representations in a synthesis-by-analysis way, which forces the search of counterfactual explanations on the natural face manifold. Thus, more general counterfactual traces can be found and better adversarial attack transferability can be achieved.
Vision Language Models are Biased
Large language models (LLMs) memorize a vast amount of prior knowledge from the Internet that help them on downstream tasks but also may notoriously sway their outputs towards wrong or biased answers. In this work, we test how the knowledge about popular subjects hurt the accuracy of vision language models (VLMs) on standard, objective visual tasks of counting and identification. We find that state-of-the-art VLMs are strongly biased (e.g, unable to recognize a fourth stripe has been added to a 3-stripe Adidas logo) scoring an average of 17.05% accuracy in counting (e.g., counting stripes in an Adidas-like logo) across 7 diverse domains from animals, logos, chess, board games, optical illusions, to patterned grids. Insert text (e.g., "Adidas") describing the subject name into the counterfactual image further decreases VLM accuracy. The biases in VLMs are so strong that instructing them to double-check their results or rely exclusively on image details to answer improves counting accuracy by only +2 points, on average. Our work presents an interesting failure mode in VLMs and an automated framework for testing VLM biases. Code and data are available at: vlmsarebiased.github.io.
Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
A Multidimensional Analysis of Social Biases in Vision Transformers
The embedding spaces of image models have been shown to encode a range of social biases such as racism and sexism. Here, we investigate specific factors that contribute to the emergence of these biases in Vision Transformers (ViT). Therefore, we measure the impact of training data, model architecture, and training objectives on social biases in the learned representations of ViTs. Our findings indicate that counterfactual augmentation training using diffusion-based image editing can mitigate biases, but does not eliminate them. Moreover, we find that larger models are less biased than smaller models, and that models trained using discriminative objectives are less biased than those trained using generative objectives. In addition, we observe inconsistencies in the learned social biases. To our surprise, ViTs can exhibit opposite biases when trained on the same data set using different self-supervised objectives. Our findings give insights into the factors that contribute to the emergence of social biases and suggests that we could achieve substantial fairness improvements based on model design choices.
Counterfactual Analysis in Dynamic Latent State Models
We provide an optimization-based framework to perform counterfactual analysis in a dynamic model with hidden states. Our framework is grounded in the ``abduction, action, and prediction'' approach to answer counterfactual queries and handles two key challenges where (1) the states are hidden and (2) the model is dynamic. Recognizing the lack of knowledge on the underlying causal mechanism and the possibility of infinitely many such mechanisms, we optimize over this space and compute upper and lower bounds on the counterfactual quantity of interest. Our work brings together ideas from causality, state-space models, simulation, and optimization, and we apply it on a breast cancer case study. To the best of our knowledge, we are the first to compute lower and upper bounds on a counterfactual query in a dynamic latent-state model.
Are VQA Systems RAD? Measuring Robustness to Augmented Data with Focused Interventions
Deep learning algorithms have shown promising results in visual question answering (VQA) tasks, but a more careful look reveals that they often do not understand the rich signal they are being fed with. To understand and better measure the generalization capabilities of VQA systems, we look at their robustness to counterfactually augmented data. Our proposed augmentations are designed to make a focused intervention on a specific property of the question such that the answer changes. Using these augmentations, we propose a new robustness measure, Robustness to Augmented Data (RAD), which measures the consistency of model predictions between original and augmented examples. Through extensive experimentation, we show that RAD, unlike classical accuracy measures, can quantify when state-of-the-art systems are not robust to counterfactuals. We find substantial failure cases which reveal that current VQA systems are still brittle. Finally, we connect between robustness and generalization, demonstrating the predictive power of RAD for performance on unseen augmentations.
Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
Problems at the intersection of vision and language are of significant importance both as challenging research questions and for the rich set of applications they enable. However, inherent structure in our world and bias in our language tend to be a simpler signal for learning than visual modalities, resulting in models that ignore visual information, leading to an inflated sense of their capability. We propose to counter these language priors for the task of Visual Question Answering (VQA) and make vision (the V in VQA) matter! Specifically, we balance the popular VQA dataset by collecting complementary images such that every question in our balanced dataset is associated with not just a single image, but rather a pair of similar images that result in two different answers to the question. Our dataset is by construction more balanced than the original VQA dataset and has approximately twice the number of image-question pairs. Our complete balanced dataset is publicly available at www.visualqa.org as part of the 2nd iteration of the Visual Question Answering Dataset and Challenge (VQA v2.0). We further benchmark a number of state-of-art VQA models on our balanced dataset. All models perform significantly worse on our balanced dataset, suggesting that these models have indeed learned to exploit language priors. This finding provides the first concrete empirical evidence for what seems to be a qualitative sense among practitioners. Finally, our data collection protocol for identifying complementary images enables us to develop a novel interpretable model, which in addition to providing an answer to the given (image, question) pair, also provides a counter-example based explanation. Specifically, it identifies an image that is similar to the original image, but it believes has a different answer to the same question. This can help in building trust for machines among their users.
Causality-Enhanced Behavior Sequence Modeling in LLMs for Personalized Recommendation
Recent advancements in recommender systems have focused on leveraging Large Language Models (LLMs) to improve user preference modeling, yielding promising outcomes. However, current LLM-based approaches struggle to fully leverage user behavior sequences, resulting in suboptimal preference modeling for personalized recommendations. In this study, we propose a novel Counterfactual Fine-Tuning (CFT) method to address this issue by explicitly emphasizing the role of behavior sequences when generating recommendations. Specifically, we employ counterfactual reasoning to identify the causal effects of behavior sequences on model output and introduce a task that directly fits the ground-truth labels based on these effects, achieving the goal of explicit emphasis. Additionally, we develop a token-level weighting mechanism to adjust the emphasis strength for different item tokens, reflecting the diminishing influence of behavior sequences from earlier to later tokens during predicting an item. Extensive experiments on real-world datasets demonstrate that CFT effectively improves behavior sequence modeling. Our codes are available at https://github.com/itsmeyjt/CFT.
Faithful Explanations of Black-box NLP Models Using LLM-generated Counterfactuals
Causal explanations of the predictions of NLP systems are essential to ensure safety and establish trust. Yet, existing methods often fall short of explaining model predictions effectively or efficiently and are often model-specific. In this paper, we address model-agnostic explanations, proposing two approaches for counterfactual (CF) approximation. The first approach is CF generation, where a large language model (LLM) is prompted to change a specific text concept while keeping confounding concepts unchanged. While this approach is demonstrated to be very effective, applying LLM at inference-time is costly. We hence present a second approach based on matching, and propose a method that is guided by an LLM at training-time and learns a dedicated embedding space. This space is faithful to a given causal graph and effectively serves to identify matches that approximate CFs. After showing theoretically that approximating CFs is required in order to construct faithful explanations, we benchmark our approaches and explain several models, including LLMs with billions of parameters. Our empirical results demonstrate the excellent performance of CF generation models as model-agnostic explainers. Moreover, our matching approach, which requires far less test-time resources, also provides effective explanations, surpassing many baselines. We also find that Top-K techniques universally improve every tested method. Finally, we showcase the potential of LLMs in constructing new benchmarks for model explanation and subsequently validate our conclusions. Our work illuminates new pathways for efficient and accurate approaches to interpreting NLP systems.
Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) have become the state-of-the-art in high-quality image generation. However, DPMs have an arbitrary noisy latent space with no interpretable or controllable semantics. Although there has been significant research effort to improve image sample quality, there is little work on representation-controlled generation using diffusion models. Specifically, causal modeling and controllable counterfactual generation using DPMs is an underexplored area. In this work, we propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation according to a specified causal model. Our key idea is to use an encoder to extract high-level semantically meaningful causal variables from high-dimensional data and model stochastic variation using reverse diffusion. We propose a causal encoding mechanism that maps high-dimensional data to causally related latent factors and parameterize the causal mechanisms among latent factors using neural networks. To enforce the disentanglement of causal variables, we formulate a variational objective and leverage auxiliary label information in a prior to regularize the latent space. We propose a DDIM-based counterfactual generation procedure subject to do-interventions. Finally, to address the limited label supervision scenario, we also study the application of CausalDiffAE when a part of the training data is unlabeled, which also enables granular control over the strength of interventions in generating counterfactuals during inference. We empirically show that CausalDiffAE learns a disentangled latent space and is capable of generating high-quality counterfactual images.
Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees
There is an emerging interest in generating robust counterfactual explanations that would remain valid if the model is updated or changed even slightly. Towards finding robust counterfactuals, existing literature often assumes that the original model m and the new model M are bounded in the parameter space, i.e., |Params(M){-}Params(m)|{<}Delta. However, models can often change significantly in the parameter space with little to no change in their predictions or accuracy on the given dataset. In this work, we introduce a mathematical abstraction termed naturally-occurring model change, which allows for arbitrary changes in the parameter space such that the change in predictions on points that lie on the data manifold is limited. Next, we propose a measure -- that we call Stability -- to quantify the robustness of counterfactuals to potential model changes for differentiable models, e.g., neural networks. Our main contribution is to show that counterfactuals with sufficiently high value of Stability as defined by our measure will remain valid after potential ``naturally-occurring'' model changes with high probability (leveraging concentration bounds for Lipschitz function of independent Gaussians). Since our quantification depends on the local Lipschitz constant around a data point which is not always available, we also examine practical relaxations of our proposed measure and demonstrate experimentally how they can be incorporated to find robust counterfactuals for neural networks that are close, realistic, and remain valid after potential model changes.
Explaining Time Series via Contrastive and Locally Sparse Perturbations
Explaining multivariate time series is a compound challenge, as it requires identifying important locations in the time series and matching complex temporal patterns. Although previous saliency-based methods addressed the challenges, their perturbation may not alleviate the distribution shift issue, which is inevitable especially in heterogeneous samples. We present ContraLSP, a locally sparse model that introduces counterfactual samples to build uninformative perturbations but keeps distribution using contrastive learning. Furthermore, we incorporate sample-specific sparse gates to generate more binary-skewed and smooth masks, which easily integrate temporal trends and select the salient features parsimoniously. Empirical studies on both synthetic and real-world datasets show that ContraLSP outperforms state-of-the-art models, demonstrating a substantial improvement in explanation quality for time series data. The source code is available at https://github.com/zichuan-liu/ContraLSP.
Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images
Creating high-quality and realistic images is now possible thanks to the impressive advancements in image generation. A description in natural language of your desired output is all you need to obtain breathtaking results. However, as the use of generative models grows, so do concerns about the propagation of malicious content and misinformation. Consequently, the research community is actively working on the development of novel fake detection techniques, primarily focusing on low-level features and possible fingerprints left by generative models during the image generation process. In a different vein, in our work, we leverage human semantic knowledge to investigate the possibility of being included in frameworks of fake image detection. To achieve this, we collect a novel dataset of partially manipulated images using diffusion models and conduct an eye-tracking experiment to record the eye movements of different observers while viewing real and fake stimuli. A preliminary statistical analysis is conducted to explore the distinctive patterns in how humans perceive genuine and altered images. Statistical findings reveal that, when perceiving counterfeit samples, humans tend to focus on more confined regions of the image, in contrast to the more dispersed observational pattern observed when viewing genuine images. Our dataset is publicly available at: https://github.com/aimagelab/unveiling-the-truth.
VITATECS: A Diagnostic Dataset for Temporal Concept Understanding of Video-Language Models
The ability to perceive how objects change over time is a crucial ingredient in human intelligence. However, current benchmarks cannot faithfully reflect the temporal understanding abilities of video-language models (VidLMs) due to the existence of static visual shortcuts. To remedy this issue, we present VITATECS, a diagnostic VIdeo-Text dAtaset for the evaluation of TEmporal Concept underStanding. Specifically, we first introduce a fine-grained taxonomy of temporal concepts in natural language in order to diagnose the capability of VidLMs to comprehend different temporal aspects. Furthermore, to disentangle the correlation between static and temporal information, we generate counterfactual video descriptions that differ from the original one only in the specified temporal aspect. We employ a semi-automatic data collection framework using large language models and human-in-the-loop annotation to obtain high-quality counterfactual descriptions efficiently. Evaluation of representative video-language understanding models confirms their deficiency in temporal understanding, revealing the need for greater emphasis on the temporal elements in video-language research.
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all machine learning based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.
Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data
Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.
All Patches Matter, More Patches Better: Enhance AI-Generated Image Detection via Panoptic Patch Learning
The exponential growth of AI-generated images (AIGIs) underscores the urgent need for robust and generalizable detection methods. In this paper, we establish two key principles for AIGI detection through systematic analysis: (1) All Patches Matter: Unlike conventional image classification where discriminative features concentrate on object-centric regions, each patch in AIGIs inherently contains synthetic artifacts due to the uniform generation process, suggesting that every patch serves as an important artifact source for detection. (2) More Patches Better: Leveraging distributed artifacts across more patches improves detection robustness by capturing complementary forensic evidence and reducing over-reliance on specific patches, thereby enhancing robustness and generalization. However, our counterfactual analysis reveals an undesirable phenomenon: naively trained detectors often exhibit a Few-Patch Bias, discriminating between real and synthetic images based on minority patches. We identify Lazy Learner as the root cause: detectors preferentially learn conspicuous artifacts in limited patches while neglecting broader artifact distributions. To address this bias, we propose the Panoptic Patch Learning (PPL) framework, involving: (1) Random Patch Replacement that randomly substitutes synthetic patches with real counterparts to compel models to identify artifacts in underutilized regions, encouraging the broader use of more patches; (2) Patch-wise Contrastive Learning that enforces consistent discriminative capability across all patches, ensuring uniform utilization of all patches. Extensive experiments across two different settings on several benchmarks verify the effectiveness of our approach.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models
While counterfactual examples are useful for analysis and training of NLP models, current generation methods either rely on manual labor to create very few counterfactuals, or only instantiate limited types of perturbations such as paraphrases or word substitutions. We present Polyjuice, a general-purpose counterfactual generator that allows for control over perturbation types and locations, trained by finetuning GPT-2 on multiple datasets of paired sentences. We show that Polyjuice produces diverse sets of realistic counterfactuals, which in turn are useful in various distinct applications: improving training and evaluation on three different tasks (with around 70% less annotation effort than manual generation), augmenting state-of-the-art explanation techniques, and supporting systematic counterfactual error analysis by revealing behaviors easily missed by human experts.
Can LLMs Simulate Personas with Reversed Performance? A Benchmark for Counterfactual Instruction Following
Large Language Models (LLMs) are now increasingly widely used to simulate personas in virtual environments, leveraging their instruction-following capability. However, we discovered that even state-of-the-art LLMs cannot simulate personas with reversed performance (e.g., student personas with low proficiency in educational settings), which impairs the simulation diversity and limits the practical applications of the simulated environments. In this work, using mathematical reasoning as a representative scenario, we propose the first benchmark dataset for evaluating LLMs on simulating personas with reversed performance, a capability that we dub "counterfactual instruction following". We evaluate both open-weight and closed-source LLMs on this task and find that LLMs, including the OpenAI o1 reasoning model, all struggle to follow counterfactual instructions for simulating reversedly performing personas. Intersectionally simulating both the performance level and the race population of a persona worsens the effect even further. These results highlight the challenges of counterfactual instruction following and the need for further research.
Discovering Transferable Forensic Features for CNN-generated Images Detection
Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
Reasoning Beyond Bias: A Study on Counterfactual Prompting and Chain of Thought Reasoning
Language models are known to absorb biases from their training data, leading to predictions driven by statistical regularities rather than semantic relevance. We investigate the impact of these biases on answer choice preferences in the Massive Multi-Task Language Understanding (MMLU) task. Our findings reveal that differences in learned regularities across answer options are predictive of model preferences and mirror human test-taking strategies. To address this issue, we introduce two novel methods: Counterfactual Prompting with Chain of Thought (CoT) and Counterfactual Prompting with Agnostically Primed CoT (APriCoT). We demonstrate that while Counterfactual Prompting with CoT alone is insufficient to mitigate bias, our novel Primed Counterfactual Prompting with CoT approach effectively reduces the influence of base-rate probabilities while improving overall accuracy. Our results suggest that mitigating bias requires a "System-2" like process and that CoT reasoning is susceptible to confirmation bias under some prompting methodologies. Our contributions offer practical solutions for developing more robust and fair language models.
Reasoning in Computer Vision: Taxonomy, Models, Tasks, and Methodologies
Visual reasoning is critical for a wide range of computer vision tasks that go beyond surface-level object detection and classification. Despite notable advances in relational, symbolic, temporal, causal, and commonsense reasoning, existing surveys often address these directions in isolation, lacking a unified analysis and comparison across reasoning types, methodologies, and evaluation protocols. This survey aims to address this gap by categorizing visual reasoning into five major types (relational, symbolic, temporal, causal, and commonsense) and systematically examining their implementation through architectures such as graph-based models, memory networks, attention mechanisms, and neuro-symbolic systems. We review evaluation protocols designed to assess functional correctness, structural consistency, and causal validity, and critically analyze their limitations in terms of generalizability, reproducibility, and explanatory power. Beyond evaluation, we identify key open challenges in visual reasoning, including scalability to complex scenes, deeper integration of symbolic and neural paradigms, the lack of comprehensive benchmark datasets, and reasoning under weak supervision. Finally, we outline a forward-looking research agenda for next-generation vision systems, emphasizing that bridging perception and reasoning is essential for building transparent, trustworthy, and cross-domain adaptive AI systems, particularly in critical domains such as autonomous driving and medical diagnostics.
CauSight: Learning to Supersense for Visual Causal Discovery
Causal thinking enables humans to understand not just what is seen, but why it happens. To replicate this capability in modern AI systems, we introduce the task of visual causal discovery. It requires models to infer cause-and-effect relations among visual entities across diverse scenarios instead of merely perceiving their presence. To this end, we first construct the Visual Causal Graph dataset (VCG-32K), a large-scale collection of over 32,000 images annotated with entity-level causal graphs, and further develop CauSight, a novel vision-language model to perform visual causal discovery through causally aware reasoning. Our training recipe integrates three components: (1) training data curation from VCG-32K, (2) Tree-of-Causal-Thought (ToCT) for synthesizing reasoning trajectories, and (3) reinforcement learning with a designed causal reward to refine the reasoning policy. Experiments show that CauSight outperforms GPT-4.1 on visual causal discovery, achieving over a threefold performance boost (21% absolute gain). Our code, model, and dataset are fully open-sourced at project page: https://github.com/OpenCausaLab/CauSight.
Counterfactual Explanation Policies in RL
As Reinforcement Learning (RL) agents are increasingly employed in diverse decision-making problems using reward preferences, it becomes important to ensure that policies learned by these frameworks in mapping observations to a probability distribution of the possible actions are explainable. However, there is little to no work in the systematic understanding of these complex policies in a contrastive manner, i.e., what minimal changes to the policy would improve/worsen its performance to a desired level. In this work, we present COUNTERPOL, the first framework to analyze RL policies using counterfactual explanations in the form of minimal changes to the policy that lead to the desired outcome. We do so by incorporating counterfactuals in supervised learning in RL with the target outcome regulated using desired return. We establish a theoretical connection between Counterpol and widely used trust region-based policy optimization methods in RL. Extensive empirical analysis shows the efficacy of COUNTERPOL in generating explanations for (un)learning skills while keeping close to the original policy. Our results on five different RL environments with diverse state and action spaces demonstrate the utility of counterfactual explanations, paving the way for new frontiers in designing and developing counterfactual policies.
Imbalanced Classification through the Lens of Spurious Correlations
Class imbalance poses a fundamental challenge in machine learning, frequently leading to unreliable classification performance. While prior methods focus on data- or loss-reweighting schemes, we view imbalance as a data condition that amplifies Clever Hans (CH) effects by underspecification of minority classes. In a counterfactual explanations-based approach, we propose to leverage Explainable AI to jointly identify and eliminate CH effects emerging under imbalance. Our method achieves competitive classification performance on three datasets and demonstrates how CH effects emerge under imbalance, a perspective largely overlooked by existing approaches.
Exploring the Efficacy of Automatically Generated Counterfactuals for Sentiment Analysis
While state-of-the-art NLP models have been achieving the excellent performance of a wide range of tasks in recent years, important questions are being raised about their robustness and their underlying sensitivity to systematic biases that may exist in their training and test data. Such issues come to be manifest in performance problems when faced with out-of-distribution data in the field. One recent solution has been to use counterfactually augmented datasets in order to reduce any reliance on spurious patterns that may exist in the original data. Producing high-quality augmented data can be costly and time-consuming as it usually needs to involve human feedback and crowdsourcing efforts. In this work, we propose an alternative by describing and evaluating an approach to automatically generating counterfactual data for data augmentation and explanation. A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance when compared to models training on the original data and even when compared to models trained with the benefit of human-generated augmented data.
Cause and Effect: Can Large Language Models Truly Understand Causality?
With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.
DISCO: Distilling Counterfactuals with Large Language Models
Models trained with counterfactually augmented data learn representations of the causal structure of tasks, enabling robust generalization. However, high-quality counterfactual data is scarce for most tasks and not easily generated at scale. When crowdsourced, such data is typically limited in scale and diversity; when generated using supervised methods, it is computationally expensive to extend to new counterfactual dimensions. In this work, we introduce DISCO (DIStilled COunterfactual Data), a new method for automatically generating high quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters these generations to distill high-quality counterfactual data. While task-agnostic, we apply our pipeline to the task of natural language inference (NLI) and find that on challenging evaluations such as the NLI stress test, comparatively smaller student models trained with DISCO generated counterfactuals are more robust (6% absolute) and generalize better across distributions (2%) compared to models trained without data augmentation. Furthermore, DISCO augmented models are 10% more consistent between counterfactual pairs on three evaluation sets, demonstrating that DISCO augmentation enables models to more reliably learn causal representations. Our repository is available at: https://github.com/eric11eca/disco
Detecting Edit Failures In Large Language Models: An Improved Specificity Benchmark
Recent model editing techniques promise to mitigate the problem of memorizing false or outdated associations during LLM training. However, we show that these techniques can introduce large unwanted side effects which are not detected by existing specificity benchmarks. We extend the existing CounterFact benchmark to include a dynamic component and dub our benchmark CounterFact+. Additionally, we extend the metrics used for measuring specificity by a principled KL divergence-based metric. We use this improved benchmark to evaluate recent model editing techniques and find that they suffer from low specificity. Our findings highlight the need for improved specificity benchmarks that identify and prevent unwanted side effects.
The Linear Representation Hypothesis and the Geometry of Large Language Models
Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.
Self-Interpretable Time Series Prediction with Counterfactual Explanations
Interpretable time series prediction is crucial for safety-critical areas such as healthcare and autonomous driving. Most existing methods focus on interpreting predictions by assigning important scores to segments of time series. In this paper, we take a different and more challenging route and aim at developing a self-interpretable model, dubbed Counterfactual Time Series (CounTS), which generates counterfactual and actionable explanations for time series predictions. Specifically, we formalize the problem of time series counterfactual explanations, establish associated evaluation protocols, and propose a variational Bayesian deep learning model equipped with counterfactual inference capability of time series abduction, action, and prediction. Compared with state-of-the-art baselines, our self-interpretable model can generate better counterfactual explanations while maintaining comparable prediction accuracy.
From Illusion to Intention: Visual Rationale Learning for Vision-Language Reasoning
Recent advances in vision-language reasoning underscore the importance of thinking with images, where models actively ground their reasoning in visual evidence. Yet, prevailing frameworks treat visual actions as optional tools, boosting metrics but leaving reasoning ungrounded and crops ineffective. This gap gives rise to the illusion of thinking with images: models seem visually grounded but rely on context-agnostic actions that neither refine perception nor guide reasoning toward correct answers. We address this problem by reframing visual actions as core reasoning primitives rather than optional tools, which we term visual rationalization, the visual analogue of textual Chain-of-Thought. Building on this insight, we propose Visual Rationale Learning (ViRL), an end-to-end paradigm that grounds training in the visual rationale itself. ViRL integrates (1) Process Supervision with ground-truth rationales, (2) Objective Alignment via step-level reward shaping, and (3) Fine-Grained Credit Assignment to distinguish correct, redundant, and erroneous actions. By ensuring each action contributes meaningfully to the reasoning chain, ViRL enables models to "get the right answer for the right visual reason". Trained purely with end-to-end RL, ViRL achieves state-of-the-art results across benchmarks spanning perception, hallucination, and reasoning. This work establishes visual rationalization as a task-agnostic, process-grounded paradigm for building transparent, verifiable, and trustworthy vision-language models.
Causal Analysis for Robust Interpretability of Neural Networks
Interpreting the inner function of neural networks is crucial for the trustworthy development and deployment of these black-box models. Prior interpretability methods focus on correlation-based measures to attribute model decisions to individual examples. However, these measures are susceptible to noise and spurious correlations encoded in the model during the training phase (e.g., biased inputs, model overfitting, or misspecification). Moreover, this process has proven to result in noisy and unstable attributions that prevent any transparent understanding of the model's behavior. In this paper, we develop a robust interventional-based method grounded by causal analysis to capture cause-effect mechanisms in pre-trained neural networks and their relation to the prediction. Our novel approach relies on path interventions to infer the causal mechanisms within hidden layers and isolate relevant and necessary information (to model prediction), avoiding noisy ones. The result is task-specific causal explanatory graphs that can audit model behavior and express the actual causes underlying its performance. We apply our method to vision models trained on classification tasks. On image classification tasks, we provide extensive quantitative experiments to show that our approach can capture more stable and faithful explanations than standard attribution-based methods. Furthermore, the underlying causal graphs reveal the neural interactions in the model, making it a valuable tool in other applications (e.g., model repair).
Yseop at SemEval-2020 Task 5: Cascaded BERT Language Model for Counterfactual Statement Analysis
In this paper, we explore strategies to detect and evaluate counterfactual sentences. We describe our system for SemEval-2020 Task 5: Modeling Causal Reasoning in Language: Detecting Counterfactuals. We use a BERT base model for the classification task and build a hybrid BERT Multi-Layer Perceptron system to handle the sequence identification task. Our experiments show that while introducing syntactic and semantic features does little in improving the system in the classification task, using these types of features as cascaded linear inputs to fine-tune the sequence-delimiting ability of the model ensures it outperforms other similar-purpose complex systems like BiLSTM-CRF in the second task. Our system achieves an F1 score of 85.00% in Task 1 and 83.90% in Task 2.
ACAT: Adversarial Counterfactual Attention for Classification and Detection in Medical Imaging
In some medical imaging tasks and other settings where only small parts of the image are informative for the classification task, traditional CNNs can sometimes struggle to generalise. Manually annotated Regions of Interest (ROI) are sometimes used to isolate the most informative parts of the image. However, these are expensive to collect and may vary significantly across annotators. To overcome these issues, we propose a framework that employs saliency maps to obtain soft spatial attention masks that modulate the image features at different scales. We refer to our method as Adversarial Counterfactual Attention (ACAT). ACAT increases the baseline classification accuracy of lesions in brain CT scans from 71.39% to 72.55% and of COVID-19 related findings in lung CT scans from 67.71% to 70.84% and exceeds the performance of competing methods. We investigate the best way to generate the saliency maps employed in our architecture and propose a way to obtain them from adversarially generated counterfactual images. They are able to isolate the area of interest in brain and lung CT scans without using any manual annotations. In the task of localising the lesion location out of 6 possible regions, they obtain a score of 65.05% on brain CT scans, improving the score of 61.29% obtained with the best competing method.
Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension
Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.
Teaching CLIP to Count to Ten
Large vision-language models (VLMs), such as CLIP, learn rich joint image-text representations, facilitating advances in numerous downstream tasks, including zero-shot classification and text-to-image generation. Nevertheless, existing VLMs exhibit a prominent well-documented limitation - they fail to encapsulate compositional concepts such as counting. We introduce a simple yet effective method to improve the quantitative understanding of VLMs, while maintaining their overall performance on common benchmarks. Specifically, we propose a new counting-contrastive loss used to finetune a pre-trained VLM in tandem with its original objective. Our counting loss is deployed over automatically-created counterfactual examples, each consisting of an image and a caption containing an incorrect object count. For example, an image depicting three dogs is paired with the caption "Six dogs playing in the yard". Our loss encourages discrimination between the correct caption and its counterfactual variant which serves as a hard negative example. To the best of our knowledge, this work is the first to extend CLIP's capabilities to object counting. Furthermore, we introduce "CountBench" - a new image-text counting benchmark for evaluating a model's understanding of object counting. We demonstrate a significant improvement over state-of-the-art baseline models on this task. Finally, we leverage our count-aware CLIP model for image retrieval and text-conditioned image generation, demonstrating that our model can produce specific counts of objects more reliably than existing ones.
CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models
We propose CX-ToM, short for counterfactual explanations with theory-of mind, a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN). In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process, i.e. dialog, between the machine and human user. More concretely, our CX-ToM framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user. To do this, we use Theory of Mind (ToM) which helps us in explicitly modeling human's intention, machine's mind as inferred by the human as well as human's mind as inferred by the machine. Moreover, most state-of-the-art XAI frameworks provide attention (or heat map) based explanations. In our work, we show that these attention based explanations are not sufficient for increasing human trust in the underlying CNN model. In CX-ToM, we instead use counterfactual explanations called fault-lines which we define as follows: given an input image I for which a CNN classification model M predicts class c_pred, a fault-line identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class c_alt. We argue that, due to the iterative, conceptual and counterfactual nature of CX-ToM explanations, our framework is practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, demonstrating that our CX-ToM significantly outperforms the state-of-the-art explainable AI models.
Causal Disentanglement for Robust Long-tail Medical Image Generation
Counterfactual medical image generation effectively addresses data scarcity and enhances the interpretability of medical images. However, due to the complex and diverse pathological features of medical images and the imbalanced class distribution in medical data, generating high-quality and diverse medical images from limited data is significantly challenging. Additionally, to fully leverage the information in limited data, such as anatomical structure information and generate more structurally stable medical images while avoiding distortion or inconsistency. In this paper, in order to enhance the clinical relevance of generated data and improve the interpretability of the model, we propose a novel medical image generation framework, which generates independent pathological and structural features based on causal disentanglement and utilizes text-guided modeling of pathological features to regulate the generation of counterfactual images. First, we achieve feature separation through causal disentanglement and analyze the interactions between features. Here, we introduce group supervision to ensure the independence of pathological and identity features. Second, we leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images. Meanwhile, we enhance accuracy by leveraging a large language model to extract lesion severity and location from medical reports. Additionally, we improve the performance of the latent diffusion model on long-tailed categories through initial noise optimization.
Masked Images Are Counterfactual Samples for Robust Fine-tuning
Deep learning models are challenged by the distribution shift between the training data and test data. Recently, the large models pre-trained on diverse data have demonstrated unprecedented robustness to various distribution shifts. However, fine-tuning these models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness. Existing methods for tackling this trade-off do not explicitly address the OOD robustness problem. In this paper, based on causal analysis of the aforementioned problems, we propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model. Specifically, we mask either the semantics-related or semantics-unrelated patches of the images based on class activation map to break the spurious correlation, and refill the masked patches with patches from other images. The resulting counterfactual samples are used in feature-based distillation with the pre-trained model. Extensive experiments verify that regularizing the fine-tuning with the proposed masked images can achieve a better trade-off between ID and OOD performance, surpassing previous methods on the OOD performance. Our code is available at https://github.com/Coxy7/robust-finetuning.
SLANT: Spurious Logo ANalysis Toolkit
Online content is filled with logos, from ads and social media posts to website branding and product placements. Consequently, these logos are prevalent in the extensive web-scraped datasets used to pretrain Vision-Language Models, which are used for a wide array of tasks (content moderation, object classification). While these models have been shown to learn harmful correlations in various tasks, whether these correlations include logos remains understudied. Understanding this is especially important due to logos often being used by public-facing entities like brands and government agencies. To that end, we develop SLANT: A Spurious Logo ANalysis Toolkit. Our key finding is that some logos indeed lead to spurious incorrect predictions, for example, adding the Adidas logo to a photo of a person causes a model classify the person as greedy. SLANT contains a semi-automatic mechanism for mining such "spurious" logos. The mechanism consists of a comprehensive logo bank, CC12M-LogoBank, and an algorithm that searches the bank for logos that VLMs spuriously correlate with a user-provided downstream recognition target. We uncover various seemingly harmless logos that VL models correlate 1) with negative human adjectives 2) with the concept of `harmlessness'; causing models to misclassify harmful online content as harmless, and 3) with user-provided object concepts; causing lower recognition accuracy on ImageNet zero-shot classification. Furthermore, SLANT's logos can be seen as effective attacks against foundational models; an attacker could place a spurious logo on harmful content, causing the model to misclassify it as harmless. This threat is alarming considering the simplicity of logo attacks, increasing the attack surface of VL models. As a defense, we include in our Toolkit two effective mitigation strategies that seamlessly integrate with zero-shot inference of foundation models.
Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Code Predicates
Large Language Models' success on text generation has also made them better at code generation and coding tasks. While a lot of work has demonstrated their remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree auto-regressive models understand the logical constructs of the underlying programs. We propose Counterfactual Analysis for Programming Concept Predicates (CACP) as a counterfactual testing framework to evaluate whether Large Code Models understand programming concepts. With only black-box access to the model, we use CACP to evaluate ten popular Large Code Models for four different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images
Large Language Models (LLMs) have showcased exceptional ability in causal reasoning from textual information. However, will these causalities remain straightforward for Vision Large Language Models (VLLMs) when only visual hints are provided? Motivated by this, we propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge VLLMs to infer semantic cause-and-effect relationship when solely relying on visual cues such as action, appearance, clothing, and environment. Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues, which can effectively evaluate VLLMs' causal reasoning capabilities. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess VLLMs' comprehension abilities. Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped. Furthermore, we perform a comprehensive analysis to understand these models' shortcomings from different views and suggest directions for future research. We hope MuCR can serve as a valuable resource and foundational benchmark in multimodal causal reasoning research. The project is available at: https://github.com/Zhiyuan-Li-John/MuCR
Inferring and Executing Programs for Visual Reasoning
Existing methods for visual reasoning attempt to directly map inputs to outputs using black-box architectures without explicitly modeling the underlying reasoning processes. As a result, these black-box models often learn to exploit biases in the data rather than learning to perform visual reasoning. Inspired by module networks, this paper proposes a model for visual reasoning that consists of a program generator that constructs an explicit representation of the reasoning process to be performed, and an execution engine that executes the resulting program to produce an answer. Both the program generator and the execution engine are implemented by neural networks, and are trained using a combination of backpropagation and REINFORCE. Using the CLEVR benchmark for visual reasoning, we show that our model significantly outperforms strong baselines and generalizes better in a variety of settings.
Enhancing Physical Plausibility in Video Generation by Reasoning the Implausibility
Diffusion models can generate realistic videos, but existing methods rely on implicitly learning physical reasoning from large-scale text-video datasets, which is costly, difficult to scale, and still prone to producing implausible motions that violate fundamental physical laws. We introduce a training-free framework that improves physical plausibility at inference time by explicitly reasoning about implausibility and guiding the generation away from it. Specifically, we employ a lightweight physics-aware reasoning pipeline to construct counterfactual prompts that deliberately encode physics-violating behaviors. Then, we propose a novel Synchronized Decoupled Guidance (SDG) strategy, which leverages these prompts through synchronized directional normalization to counteract lagged suppression and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring that implausible content is suppressed immediately and consistently throughout denoising. Experiments across different physical domains show that our approach substantially enhances physical fidelity while maintaining photorealism, despite requiring no additional training. Ablation studies confirm the complementary effectiveness of both the physics-aware reasoning component and SDG. In particular, the aforementioned two designs of SDG are also individually validated to contribute critically to the suppression of implausible content and the overall gains in physical plausibility. This establishes a new and plug-and-play physics-aware paradigm for video generation.
Adversarial Counterfactual Environment Model Learning
A good model for action-effect prediction, named environment model, is important to achieve sample-efficient decision-making policy learning in many domains like robot control, recommender systems, and patients' treatment selection. We can take unlimited trials with such a model to identify the appropriate actions so that the costs of queries in the real world can be saved. It requires the model to handle unseen data correctly, also called counterfactual data. However, standard data fitting techniques do not automatically achieve such generalization ability and commonly result in unreliable models. In this work, we introduce counterfactual-query risk minimization (CQRM) in model learning for generalizing to a counterfactual dataset queried by a specific target policy. Since the target policies can be various and unknown in policy learning, we propose an adversarial CQRM objective in which the model learns on counterfactual data queried by adversarial policies, and finally derive a tractable solution GALILEO. We also discover that adversarial CQRM is closely related to the adversarial model learning, explaining the effectiveness of the latter. We apply GALILEO in synthetic tasks and a real-world application. The results show that GALILEO makes accurate predictions on counterfactual data and thus significantly improves policies in real-world testing.
Accurate Use of Label Dependency in Multi-Label Text Classification Through the Lens of Causality
Multi-Label Text Classification (MLTC) aims to assign the most relevant labels to each given text. Existing methods demonstrate that label dependency can help to improve the model's performance. However, the introduction of label dependency may cause the model to suffer from unwanted prediction bias. In this study, we attribute the bias to the model's misuse of label dependency, i.e., the model tends to utilize the correlation shortcut in label dependency rather than fusing text information and label dependency for prediction. Motivated by causal inference, we propose a CounterFactual Text Classifier (CFTC) to eliminate the correlation bias, and make causality-based predictions. Specifically, our CFTC first adopts the predict-then-modify backbone to extract precise label information embedded in label dependency, then blocks the correlation shortcut through the counterfactual de-bias technique with the help of the human causal graph. Experimental results on three datasets demonstrate that our CFTC significantly outperforms the baselines and effectively eliminates the correlation bias in datasets.
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression
The origin of adversarial examples is still inexplicable in research fields, and it arouses arguments from various viewpoints, albeit comprehensive investigations. In this paper, we propose a way of delving into the unexpected vulnerability in adversarially trained networks from a causal perspective, namely adversarial instrumental variable (IV) regression. By deploying it, we estimate the causal relation of adversarial prediction under an unbiased environment dissociated from unknown confounders. Our approach aims to demystify inherent causal features on adversarial examples by leveraging a zero-sum optimization game between a casual feature estimator (i.e., hypothesis model) and worst-case counterfactuals (i.e., test function) disturbing to find causal features. Through extensive analyses, we demonstrate that the estimated causal features are highly related to the correct prediction for adversarial robustness, and the counterfactuals exhibit extreme features significantly deviating from the correct prediction. In addition, we present how to effectively inoculate CAusal FEatures (CAFE) into defense networks for improving adversarial robustness.
AutoCAD: Automatically Generating Counterfactuals for Mitigating Shortcut Learning
Recent studies have shown the impressive efficacy of counterfactually augmented data (CAD) for reducing NLU models' reliance on spurious features and improving their generalizability. However, current methods still heavily rely on human efforts or task-specific designs to generate counterfactuals, thereby impeding CAD's applicability to a broad range of NLU tasks. In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework. AutoCAD first leverages a classifier to unsupervisedly identify rationales as spans to be intervened, which disentangles spurious and causal features. Then, AutoCAD performs controllable generation enhanced by unlikelihood training to produce diverse counterfactuals. Extensive evaluations on multiple out-of-domain and challenge benchmarks demonstrate that AutoCAD consistently and significantly boosts the out-of-distribution performance of powerful pre-trained models across different NLU tasks, which is comparable or even better than previous state-of-the-art human-in-the-loop or task-specific CAD methods. The code is publicly available at https://github.com/thu-coai/AutoCAD.
Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT
CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations
Vision-Language Models (VLMs) have demonstrated their widespread viability thanks to extensive training in aligning visual instructions to answers. However, this conclusive alignment leads models to ignore critical visual reasoning, and further result in failures on meticulous visual problems and unfaithful responses. In this paper, we propose Chain of Manipulations, a mechanism that enables VLMs to solve problems with a series of manipulations, where each manipulation refers to an operation on the visual input, either from intrinsic abilities (e.g., grounding) acquired through prior training or from imitating human-like behaviors (e.g., zoom in). This mechanism encourages VLMs to generate faithful responses with evidential visual reasoning, and permits users to trace error causes in the interpretable paths. We thus train CogCoM, a general 17B VLM with a memory-based compatible architecture endowed this reasoning mechanism. Experiments show that our model achieves the state-of-the-art performance across 8 benchmarks from 3 categories, and a limited number of training steps with the data swiftly gains a competitive performance. The code and data are publicly available at https://github.com/THUDM/CogCoM.
Don't Fight Hallucinations, Use Them: Estimating Image Realism using NLI over Atomic Facts
Quantifying the realism of images remains a challenging problem in the field of artificial intelligence. For example, an image of Albert Einstein holding a smartphone violates common-sense because modern smartphone were invented after Einstein's death. We introduce a novel method for assessing image realism using Large Vision-Language Models (LVLMs) and Natural Language Inference (NLI). Our approach is based on the premise that LVLMs may generate hallucinations when confronted with images that defy common sense. Using LVLM to extract atomic facts from these images, we obtain a mix of accurate facts and erroneous hallucinations. We proceed by calculating pairwise entailment scores among these facts, subsequently aggregating these values to yield a singular reality score. This process serves to identify contradictions between genuine facts and hallucinatory elements, signaling the presence of images that violate common sense. Our approach has achieved a new state-of-the-art performance in zero-shot mode on the WHOOPS! dataset.
Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)
The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT^2 benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.
What's Missing in Vision-Language Models? Probing Their Struggles with Causal Order Reasoning
Despite the impressive performance of vision-language models (VLMs) on downstream tasks, their ability to understand and reason about causal relationships in visual inputs remains unclear. Robust causal reasoning is fundamental to solving complex high-level reasoning tasks, yet existing benchmarks often include a mixture of reasoning questions, and VLMs can frequently exploit object recognition and activity identification as shortcuts to arrive at the correct answers, making it challenging to truly assess their causal reasoning abilities. To bridge this gap, we introduce VQA-Causal and VCR-Causal, two new benchmarks specifically designed to isolate and rigorously evaluate VLMs' causal reasoning abilities. Our findings reveal that while VLMs excel in object and activity recognition, they perform poorly on causal reasoning tasks, often only marginally surpassing random guessing. Further analysis suggests that this limitation stems from a severe lack of causal expressions in widely used training datasets, where causal relationships are rarely explicitly conveyed. We additionally explore fine-tuning strategies with hard negative cases, showing that targeted fine-tuning can improve model's causal reasoning while maintaining generalization and downstream performance. Our study highlights a key gap in current VLMs and lays the groundwork for future work on causal understanding.
TRAVL: A Recipe for Making Video-Language Models Better Judges of Physics Implausibility
Despite impressive visual fidelity, modern video generative models frequently produce sequences that violate intuitive physical laws, such as objects floating, teleporting, or morphing in ways that defy causality. While humans can easily detect such implausibilities, there remains no robust method for quantitatively assessing physical realism in video. In this work, we explore whether Video-Language Models (VLMs) can be trained to serve as reliable judges of physical plausibility. We find that existing VLMs struggle to identify physics violations, exposing fundamental limitations in their temporal and causal reasoning. To address this, we introduce TRAVL, a fine-tuning recipe that combines a balanced training dataset with a trajectory-aware attention module to improve motion encoding and discrimination in VLMs. To evaluate physical reasoning more rigorously, we propose ImplausiBench, a benchmark of 300 videos (150 real, 150 generated) that removes linguistic biases and isolates visual-temporal understanding. Performance is reported both with gold-standard human judgments and stricter LLM-as-judge metrics. Together, TRAVL and ImplausiBench offer a unified framework for probing and improving physical plausibility in multimodal models, shedding light on a challenging and underexplored aspect of visual-temporal understanding.
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
To address the interpretability challenge in machine learning (ML) systems, counterfactual explanations (CEs) have emerged as a promising solution. CEs are unique as they provide workable suggestions to users, in addition to explaining why a certain outcome was predicted. The application of CEs encounters two main challenges: general user preferences and variable ML systems. User preferences tend to be general rather than specific, and CEs need to be adaptable to variable ML models while maintaining robustness even as these models change. Facing these challenges, we present a solution rooted in validated general user preferences, which are derived from thorough user research. We map these preferences to the properties of CEs. Additionally, we introduce a novel method, Tree-based Conditions Optional Links (T-COL), which incorporates two optional structures and multiple condition groups for generating CEs adaptable to general user preferences. Meanwhile, we employ T-COL to enhance the robustness of CEs with specific conditions, making them more valid even when the ML model is replaced. Our experimental comparisons under different user preferences show that T-COL outperforms all baselines, including Large Language Models which are shown to be able to generate counterfactuals.
Towards credible visual model interpretation with path attribution
Originally inspired by game-theory, path attribution framework stands out among the post-hoc model interpretation tools due to its axiomatic nature. However, recent developments show that this framework can still suffer from counter-intuitive results. Moreover, specifically for deep visual models, the existing path-based methods also fall short on conforming to the original intuitions that are the basis of the claimed axiomatic properties of this framework. We address these problems with a systematic investigation, and pinpoint the conditions in which the counter-intuitive results can be avoided for deep visual model interpretation with the path attribution strategy. We also devise a scheme to preclude the conditions in which visual model interpretation can invalidate the axiomatic properties of path attribution. These insights are combined into a method that enables reliable visual model interpretation. Our findings are establish empirically with multiple datasets, models and evaluation metrics. Extensive experiments show a consistent performance gain of our method over the baselines.
Counterfactual Fairness in Mortgage Lending via Matching and Randomization
Unfairness in mortgage lending has created generational inequality among racial and ethnic groups in the US. Many studies address this problem, but most existing work focuses on correlation-based techniques. In our work, we use the framework of counterfactual fairness to train fair machine learning models. We propose a new causal graph for the variables available in the Home Mortgage Disclosure Act (HMDA) data. We use a matching-based approach instead of the latent variable modeling approach, because the former approach does not rely on any modeling assumptions. Furthermore, matching provides us with counterfactual pairs in which the race variable is isolated. We first demonstrate the unfairness in mortgage approval and interest rates between African-American and non-Hispanic White sub-populations. Then, we show that having balanced data using matching does not guarantee perfect counterfactual fairness of the machine learning models.
Causal Proxy Models for Concept-Based Model Explanations
Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model N because it is trained to have the same actual input/output behavior as N while creating neural representations that can be intervened upon to simulate the counterfactual input/output behavior of N. Furthermore, we show that the best CPM for N performs comparably to N in making factual predictions, which means that the CPM can simply replace N, leading to more explainable deployed models. Our code is available at https://github.com/frankaging/Causal-Proxy-Model.
Adaptive Generation of Bias-Eliciting Questions for LLMs
Large language models (LLMs) are now widely deployed in user-facing applications, reaching hundreds of millions worldwide. As they become integrated into everyday tasks, growing reliance on their outputs raises significant concerns. In particular, users may unknowingly be exposed to model-inherent biases that systematically disadvantage or stereotype certain groups. However, existing bias benchmarks continue to rely on templated prompts or restrictive multiple-choice questions that are suggestive, simplistic, and fail to capture the complexity of real-world user interactions. In this work, we address this gap by introducing a counterfactual bias evaluation framework that automatically generates realistic, open-ended questions over sensitive attributes such as sex, race, or religion. By iteratively mutating and selecting bias-inducing questions, our approach systematically explores areas where models are most susceptible to biased behavior. Beyond detecting harmful biases, we also capture distinct response dimensions that are increasingly relevant in user interactions, such as asymmetric refusals and explicit acknowledgment of bias. Leveraging our framework, we construct CAB, a human-verified benchmark spanning diverse topics, designed to enable cross-model comparisons. Using CAB, we analyze a range of LLMs across multiple bias dimensions, revealing nuanced insights into how different models manifest bias. For instance, while GPT-5 outperforms other models, it nonetheless exhibits persistent biases in specific scenarios. These findings underscore the need for continual improvements to ensure fair model behavior.
Look, Remember and Reason: Visual Reasoning with Grounded Rationales
Large language models have recently shown human level performance on a variety of reasoning tasks. However, the ability of these models to perform complex visual reasoning has not been studied in detail yet. A key challenge in many visual reasoning tasks is that the visual information needs to be tightly integrated in the reasoning process. We propose to address this challenge by drawing inspiration from human visual problem solving which depends on a variety of low-level visual capabilities. It can often be cast as the three step-process of ``Look, Remember, Reason'': visual information is incrementally extracted using low-level visual routines in a step-by-step fashion until a final answer is reached. We follow the same paradigm to enable existing large language models, with minimal changes to the architecture, to solve visual reasoning problems. To this end, we introduce rationales over the visual input that allow us to integrate low-level visual capabilities, such as object recognition and tracking, as surrogate tasks. We show competitive performance on diverse visual reasoning tasks from the CLEVR, CATER, and ACRE datasets over state-of-the-art models designed specifically for these tasks.
Do Models Explain Themselves? Counterfactual Simulatability of Natural Language Explanations
Large language models (LLMs) are trained to imitate humans to explain human decisions. However, do LLMs explain themselves? Can they help humans build mental models of how LLMs process different inputs? To answer these questions, we propose to evaluate counterfactual simulatability of natural language explanations: whether an explanation can enable humans to precisely infer the model's outputs on diverse counterfactuals of the explained input. For example, if a model answers "yes" to the input question "Can eagles fly?" with the explanation "all birds can fly", then humans would infer from the explanation that it would also answer "yes" to the counterfactual input "Can penguins fly?". If the explanation is precise, then the model's answer should match humans' expectations. We implemented two metrics based on counterfactual simulatability: precision and generality. We generated diverse counterfactuals automatically using LLMs. We then used these metrics to evaluate state-of-the-art LLMs (e.g., GPT-4) on two tasks: multi-hop factual reasoning and reward modeling. We found that LLM's explanations have low precision and that precision does not correlate with plausibility. Therefore, naively optimizing human approvals (e.g., RLHF) may not be a sufficient solution.
