new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

$\text{E}^2\text{Rank}$: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker

Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E^2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E^2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.

Alibaba-NLP Alibaba-NLP
·
Oct 26 1

InsertRank: LLMs can reason over BM25 scores to Improve Listwise Reranking

Large Language Models (LLMs) have demonstrated significant strides across various information retrieval tasks, particularly as rerankers, owing to their strong generalization and knowledge-transfer capabilities acquired from extensive pretraining. In parallel, the rise of LLM-based chat interfaces has raised user expectations, encouraging users to pose more complex queries that necessitate retrieval by ``reasoning'' over documents rather than through simple keyword matching or semantic similarity. While some recent efforts have exploited reasoning abilities of LLMs for reranking such queries, considerable potential for improvement remains. In that regards, we introduce InsertRank, an LLM-based reranker that leverages lexical signals like BM25 scores during reranking to further improve retrieval performance. InsertRank demonstrates improved retrieval effectiveness on -- BRIGHT, a reasoning benchmark spanning 12 diverse domains, and R2MED, a specialized medical reasoning retrieval benchmark spanning 8 different tasks. We conduct an exhaustive evaluation and several ablation studies and demonstrate that InsertRank consistently improves retrieval effectiveness across multiple families of LLMs, including GPT, Gemini, and Deepseek models. %In addition, we also conduct ablation studies on normalization by varying the scale of the BM25 scores, and positional bias by shuffling the order of the documents. With Deepseek-R1, InsertRank achieves a score of 37.5 on the BRIGHT benchmark. and 51.1 on the R2MED benchmark, surpassing previous methods.

  • 3 authors
·
Jun 16