new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Multi-modal On-Device Learning for Monocular Depth Estimation on Ultra-low-power MCUs

Monocular depth estimation (MDE) plays a crucial role in enabling spatially-aware applications in Ultra-low-power (ULP) Internet-of-Things (IoT) platforms. However, the limited number of parameters of Deep Neural Networks for the MDE task, designed for IoT nodes, results in severe accuracy drops when the sensor data observed in the field shifts significantly from the training dataset. To address this domain shift problem, we present a multi-modal On-Device Learning (ODL) technique, deployed on an IoT device integrating a Greenwaves GAP9 MicroController Unit (MCU), a 80 mW monocular camera and a 8 x 8 pixel depth sensor, consuming approx300mW. In its normal operation, this setup feeds a tiny 107 k-parameter μPyD-Net model with monocular images for inference. The depth sensor, usually deactivated to minimize energy consumption, is only activated alongside the camera to collect pseudo-labels when the system is placed in a new environment. Then, the fine-tuning task is performed entirely on the MCU, using the new data. To optimize our backpropagation-based on-device training, we introduce a novel memory-driven sparse update scheme, which minimizes the fine-tuning memory to 1.2 MB, 2.2x less than a full update, while preserving accuracy (i.e., only 2% and 1.5% drops on the KITTI and NYUv2 datasets). Our in-field tests demonstrate, for the first time, that ODL for MDE can be performed in 17.8 minutes on the IoT node, reducing the root mean squared error from 4.9 to 0.6m with only 3 k self-labeled samples, collected in a real-life deployment scenario.

  • 6 authors
·
Nov 26, 2025

Toward smart composites: small-scale, untethered prediction and control for soft sensor/actuator systems

We present formulation and open-source tools to achieve in-material model predictive control of sensor/actuator systems using learned forward kinematics and on-device computation. Microcontroller units (MCUs) that compute the prediction and control task while colocated with the sensors and actuators enable in-material untethered behaviors. In this approach, small parameter size neural network models learn forward kinematics offline. Our open-source compiler, nn4mc, generates code to offload these predictions onto MCUs. A Newton-Raphson solver then computes the control input in real time. We first benchmark this nonlinear control approach against a PID controller on a mass-spring-damper simulation. We then study experimental results on two experimental rigs with different sensing, actuation and computational hardware: a tendon-based platform with embedded LightLace sensors and a HASEL-based platform with magnetic sensors. Experimental results indicate effective high-bandwidth tracking of reference paths (greater than or equal to 120 Hz) with a small memory footprint (less than or equal to 6.4% of flash memory). The measured path following error does not exceed 2mm in the tendon-based platform. The simulated path following error does not exceed 1mm in the HASEL-based platform. The mean power consumption of this approach in an ARM Cortex-M4f device is 45.4 mW. This control approach is also compatible with Tensorflow Lite models and equivalent on-device code. In-material intelligence enables a new class of composites that infuse autonomy into structures and systems with refined artificial proprioception.

  • 7 authors
·
May 22, 2022

TinyMyo: a Tiny Foundation Model for Flexible EMG Signal Processing at the Edge

Surface electromyography (EMG) is a non-invasive sensing modality used in several domains, including biomechanics, rehabilitation, prosthetic control, and emerging human-machine interaction paradigms. Despite decades of use, significant challenges remain in achieving robust generalization across subjects, recording systems, and acquisition protocols. To tackle these challenges, foundation models (FMs) are gaining traction when targeting end-to-end applications based on EMG signals. Yet, existing EMG FMs remain limited to single downstream tasks and lack deployability on embedded platforms. In this work, we present TinyMyo, a lightweight FM based on a Transformer encoder architecture. The model is pre-trained in a self-supervised manner on publicly available datasets and achieves high reconstruction fidelity with only 3.6M parameters. With minimal task-specific head adaptations, the same backbone is used to tackle multiple downstream tasks, leveraging datasets acquired from diverse sensing locations and hardware platforms. We demonstrate generalization across hand gesture classification, hand kinematic regression, speech production and recognition, with performance comparable to or surpassing the state of the art (SoA), and model size below 5M parameters. We achieve SoA results compared to previous FM-based works on the NinaPro DB5 (89.4pm0.16%), UCI-EMG (97.56pm0.32%), and EPN-612 (96.74pm0.09%) datasets. We report, to the best of our knowledge, the first deployment of an EMG FM on an ultra-low-power microcontroller (GAP9), achieving an average power envelope of 36.45mW. By open-sourcing the pre-trained and the downstream task architectures (https://github.com/pulp-bio/BioFoundation), we aim to provide a flexible resource that can accelerate future research and serve as a common foundation for the EMG community.

  • 6 authors
·
Dec 5, 2025