45 Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text Detecting text generated by modern large language models is thought to be hard, as both LLMs and humans can exhibit a wide range of complex behaviors. However, we find that a score based on contrasting two closely related language models is highly accurate at separating human-generated and machine-generated text. Based on this mechanism, we propose a novel LLM detector that only requires simple calculations using a pair of pre-trained LLMs. The method, called Binoculars, achieves state-of-the-art accuracy without any training data. It is capable of spotting machine text from a range of modern LLMs without any model-specific modifications. We comprehensively evaluate Binoculars on a number of text sources and in varied situations. Over a wide range of document types, Binoculars detects over 90% of generated samples from ChatGPT (and other LLMs) at a false positive rate of 0.01%, despite not being trained on any ChatGPT data. 8 authors · Jan 22, 2024 3
4 Machine Text Detectors are Membership Inference Attacks Although membership inference attacks (MIAs) and machine-generated text detection target different goals, identifying training samples and synthetic texts, their methods often exploit similar signals based on a language model's probability distribution. Despite this shared methodological foundation, the two tasks have been independently studied, which may lead to conclusions that overlook stronger methods and valuable insights developed in the other task. In this work, we theoretically and empirically investigate the transferability, i.e., how well a method originally developed for one task performs on the other, between MIAs and machine text detection. For our theoretical contribution, we prove that the metric that achieves the asymptotically highest performance on both tasks is the same. We unify a large proportion of the existing literature in the context of this optimal metric and hypothesize that the accuracy with which a given method approximates this metric is directly correlated with its transferability. Our large-scale empirical experiments, including 7 state-of-the-art MIA methods and 5 state-of-the-art machine text detectors across 13 domains and 10 generators, demonstrate very strong rank correlation (rho > 0.6) in cross-task performance. We notably find that Binoculars, originally designed for machine text detection, achieves state-of-the-art performance on MIA benchmarks as well, demonstrating the practical impact of the transferability. Our findings highlight the need for greater cross-task awareness and collaboration between the two research communities. To facilitate cross-task developments and fair evaluations, we introduce MINT, a unified evaluation suite for MIAs and machine-generated text detection, with implementation of 15 recent methods from both tasks. 5 authors · Oct 22 2
- Evading AI-Generated Content Detectors using Homoglyphs The generation of text that is increasingly human-like has been enabled by the advent of large language models (LLMs). As the detection of AI-generated content holds significant importance in the fight against issues such as misinformation and academic cheating, numerous studies have been conducted to develop reliable LLM detectors. While promising results have been demonstrated by such detectors on test data, recent research has revealed that they can be circumvented by employing different techniques. In this article, homoglyph-based (a alpha) attacks that can be used to circumvent existing LLM detectors are presented. The efficacy of the attacks is illustrated by analizing how homoglyphs shift the tokenization of the text, and thus its token loglikelihoods. A comprehensive evaluation is conducted to assess the effectiveness of homoglyphs on state-of-the-art LLM detectors, including Binoculars, DetectGPT, OpenAI's detector, and watermarking techniques, on five different datasets. A significant reduction in the efficiency of all the studied configurations of detectors and datasets, down to an accuracy of 0.5 (random guessing), is demonstrated by the proposed approach. The results show that homoglyph-based attacks can effectively evade existing LLM detectors, and the implications of these findings are discussed along with possible defenses against such attacks. 2 authors · Jun 17, 2024
- A Practical Examination of AI-Generated Text Detectors for Large Language Models The proliferation of large language models has raised growing concerns about their misuse, particularly in cases where AI-generated text is falsely attributed to human authors. Machine-generated content detectors claim to effectively identify such text under various conditions and from any language model. This paper critically evaluates these claims by assessing several popular detectors (RADAR, Wild, T5Sentinel, Fast-DetectGPT, PHD, LogRank, Binoculars) on a range of domains, datasets, and models that these detectors have not previously encountered. We employ various prompting strategies to simulate practical adversarial attacks, demonstrating that even moderate efforts can significantly evade detection. We emphasize the importance of the true positive rate at a specific false positive rate (TPR@FPR) metric and demonstrate that these detectors perform poorly in certain settings, with [email protected] as low as 0%. Our findings suggest that both trained and zero-shot detectors struggle to maintain high sensitivity while achieving a reasonable true positive rate. 3 authors · Dec 6, 2024