Hyperentanglement in Nanophotonic Systems with Discrete Rotational Symmetry
Abstract
A scheme is proposed to generate hyperentanglement between photons with angular momentum in nanophotonic systems using polygonal gratings, preserving high-dimensional Hilbert space and expanding quantum communication capabilities.
We propose a scheme to generate hyperentanglement between photons carrying angular momentum in nanophotonic systems with discrete rotational symmetry. Coupling free-space photons into surface plasmon polaritons by a polygonal-shaped grating restricts the basis of the generated near-field modes to a finite set, thus creating a new mechanism for spatial mode entanglement. By encoding the incoming photons with spin and orbital angular momenta, we find that the system preserves the high-dimensional Hilbert space, in contrast to rotationally symmetric nanophotonic platforms, where the inseparability of spin and orbital degrees of freedom results in loss of information. We further show that by properly engineering the phase of the photons to conform to the polygonal boundary conditions, we achieve a new scheme for generating hyperentangled states, utilizing both the vector-field nature of the nanophotonic modes and the finite basis of states in polygonal boundary conditions. Our approach paves the way for on-chip quantum communication by expanding the Hilbert space used in computation.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper